• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Evolution of 110 kV Substation Power Supply Side Bus Connection Configurations

Vziman
Field: Manufacturing
China

Early 110 kV substations typically adopted the "internal bus connection" configuration on the power supply side, where the power source commonly used the "internal bridge connection" method. This was often observed in certain 220 kV substations supplying 110 kV buses from different transformers in a "same-direction dual-power" arrangement. This setup involved two transformers, with the 10 kV side using a single busbar with sectionalized connection.

Advantages included simple wiring, convenient operation, straightforward automatic transfer switching, and only three switches required on the power side for the two transformers. Additionally, the power-side busbar did not require separate protection—being covered within the transformer differential protection zone—and the overall investment was lower. However, limitations existed: each busbar could accommodate only one transformer, constraining the growth of the 10 kV load capacity. Moreover, when one transformer was in operation, half of the substation had to be de-energized, creating a risk of complete station blackout if the other half experienced equipment failure.

To enhance station capacity and improve supply reliability, an intermediate-stage solution for 110 kV substations adopted the "expanded internal bus connection" method, with the power side mainly using the "expanded bridge connection." This configuration involved three transformers. Power was supplied through two "side busbars" from the same-direction dual-power 110 kV buses of a single 220 kV substation, and one "middle busbar" from a different-direction single-power supply of another 220 kV substation.

The 10 kV side continued to use a single sectionalized busbar, ideally segmenting the middle transformer’s 10 kV output into sections A and B. This approach increased the number of 10 kV outgoing circuits and allowed load redistribution from the middle transformer to the other two in case of outage. However, it introduced greater complexity in operation and automatic switching, along with higher investment.

With urban expansion, increasing land scarcity, and surging electricity demand, there arose a pressing need to further boost substation capacity and reliability. The current design for 110 kV substations primarily employs a single sectionalized busbar on the power side, connecting four transformers—each linked to separate buses, with the two middle transformers cross-connected to the upstream power source. On the 10 kV side, an A/B segmented configuration is used, forming an eight-segment "ring connection" powered by the four transformers.

This design increases the number of 10 kV outgoing circuits and enhances supply reliability. The cross-connection of the two middle transformers to the upstream source ensures uninterrupted power supply to the eight-segment 10 kV busbar even if one 110 kV busbar is de-energized. Drawbacks include the need for dedicated protection on the 110 kV busbar, high initial investment, and increased operational complexity.

Give a tip and encourage the author!

Recommended

Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Neutral point grounding operation mode for 110kV~220kV power grid transformers
The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
01/29/2026
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
01/29/2026
HECI GCB for Generators – Fast SF6 Circuit Breaker
1.Definition and Function1.1 Role of the Generator Circuit BreakerThe Generator Circuit Breaker (GCB) is a controllable disconnect point located between the generator and the step-up transformer, serving as an interface between the generator and the power grid. Its primary functions include isolating generator-side faults and enabling operational control during generator synchronization and grid connection. The operating principle of a GCB is not significantly different from that of a standard c
01/06/2026
Related Products
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.