Electric Vehicle Charging Pile Testing Technologies and Failure Analysis

Oliver Watts
06/23/2025

1. Detection Technology for Electric Vehicle Charging Piles
EV charging piles are primarily divided into two categories: DC charging piles and AC charging piles. Let's start with DC charging piles: they communicate with the EV's battery management system (BMS) and directly charge the power battery through the DC charging interface. AC charging piles, on the other hand, rely on the EV's AC charging interface and use the vehicle-mounted charger to complete the charging process. These two types of charging piles differ in detection equipment and methods.
The detection system must test the interoperability, electrical performance, and communication protocol consistency of DC off-board chargers and AC charging piles. It typically consists of equipment such as oscilloscopes, AC power supplies, AC loads, DC loads, AC interface simulators, battery simulators, and DC interface simulators.
Regarding safety detection technology, it generally includes the following:
  • One-time charging operation, technical detection, and diagnostic protocols for charging piles. Innovating charging equipment can reduce influencing factors in test field preparation and detection.
  • Application of photovoltaic power generation systems. For such systems, stability and safety are critical for installation and power supply. During external vehicle inspections, monocrystalline silicon photovoltaic solar panels can be converted via an inverter into power for experimental equipment. This ensures experiments can proceed smoothly even without access to on-site test power, providing timely power supplementation.
2. Fault Analysis of EV Charging Pile Detection
2.1 Detection Content
The complexity of EV charging piles not only affects EV usability but also directly impacts user safety. Thus, the importance of EV charging pile detection cannot be overstated.
  • AC charging piles: Prioritize detecting power-on status, particularly load-breaking circuits, and check for abnormal connections between these circuits and high-power AC loads. Test verification and charging preparation are critical processes for AC charging pile interoperability.
  • Off-board charging piles: Focus on detecting output voltage deviations, charger current, and output current deviations. Current adjustment time detection must align with AC power supplies and DC loads, as must output current control deviation detection.
  • Communication protocols for off-board chargers: Detect charging processes and related configuration parameters. Environmental and temporal factors easily affect detection results, so content optimization is necessary.
2.2 Fault Analysis
As shown in Table 1, most charging pile issues are software-related (Items 1–10). Charging piles are complex systems heavily reliant on software. Variations in manufacturers' interpretations and implementations of standards often lead to software malfunctions. Therefore, manufacturers must deeply understand standards and enforce them strictly.
Hardware-related issues (Items 6, 7, 11), such as faulty electronic locks, discharge resistors, or charging modules, require manufacturers to optimize product quality.
3. Conclusion
The EV and charging pile industries are growing rapidly. Due to complex charging interfaces and numerous detection items, testing is time-consuming and inefficient. With millions of charging piles in operation, future development must focus on reducing testing time and improving efficiency. Achieving this goal requires collaboration among standards bodies, testing institutions, and manufacturers. Together, we can drive progress in this field.
Oliver Watts

Hey! I'm Oliver Watts, an electrical engineer in Inspection and Testing. With years of hands - on experience, I ensure electrical systems meet top safety and performance standards. Using advanced gear, I conduct diverse tests, easily spotting issues in both large - scale industrial and small - scale commercial setups. I love teaming up, sharing knowledge, and keeping up with industry regs. Also, I'm skilled at data analysis with software. If you're into electrical inspection or just want to chat engineering, reach out. Let's connect and explore!

Research on the Withstand Voltage Test Method for UHV Oil - immersed Reactors
Research on the Withstand Voltage Test Method for UHV Oil - immersed Reactors
1 Investigation of Insulation Defects in UHV Oil - immersed ReactorsKey challenges in high - voltage oil - filled reactors during operation include insulation faults, iron - core magnetic leakage heating, vibration/noise, and oil leakage.1.1 Insulation FaultsParallel - connected reactors, once connected to the main grid’s primary coil and put into use, operate at full power long - term. Sustained high voltage raises operating temperatures, accelerating aging of coil insulation materials an
Oliver Watts
07/24/2025
Research on the Evaluation Method of Uncertainty in the Verification and Measurement Results of Electronic Voltage Transformers in Power Grids
Research on the Evaluation Method of Uncertainty in the Verification and Measurement Results of Electronic Voltage Transformers in Power Grids
1. IntroductionGrid electronic voltage transformers, as indispensable measuring components in power systems, have their measurement accuracy directly tied to the stable operation and efficient management of power systems. However, in practice, due to the inherent characteristics of electronic components, environmental factors, and limitations of measurement methods, the measurement results of voltage transformers often involve uncertainty. This uncertainty not only impacts the accuracy of power
Oliver Watts
07/24/2025
Test of 10 kV Electronic Current Transformer
Test of 10 kV Electronic Current Transformer
1 Performance AdvantagesIn recent years, electronic current transformers (ECTs) have emerged as a key industry trend. National standards classify them into two types: Active Optical Current Transformers (AOCTs, active hybrid type) and Optical Current Transformers (OCTs, passive optical type). Active hybrid ECTs use low-power electromagnetic transformers and Rogowski coils as core sensing elements (Figure 1).Rogowski coils outperform traditional sensors with non-saturation and wide dynamic ranges
Oliver Watts
07/22/2025
What Tests Are Required for a Qualified Combined Instrument Transformer?
What Tests Are Required for a Qualified Combined Instrument Transformer?
Hi everyone, I’m Oliver, and I’ve been working in the instrument transformer industry for almost eight years now. From a complete newbie to someone who can now handle things independently, I’ve participated in dozens of combined instrument transformer inspections over the years.Today, I’d like to share with you: What tests must a qualified combined instrument transformer go through before leaving the factory or being put into operation? After all, it's a very critical pie
Oliver Watts
07/21/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!