• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Starting of an Induction Motor

Edwiin
Edwiin
Field: Power switch
China

Three - Phase Induction Motors: Self - Starting Mechanism and Starting Methods

A three - phase induction motor is inherently self - starting. When the power supply is connected to the stator of a three - phase induction motor, a rotating magnetic field is generated. This rotating magnetic field interacts with the rotor, causing it to start rotating and initiating the operation of the induction motor. At the moment of starting, the motor slip is equal to 1, and the starting current is significantly high.

The role of a starter in a three - phase induction motor extends beyond mere starting. It serves two primary functions:

  1. Current Limitation: It reduces the substantial starting current, which, if left unchecked, could cause damage to the motor windings, overheat electrical components, and create voltage drops in the supply system.

  2. Protection: It provides essential safeguards against overloads, which occur when the motor draws excessive current due to mechanical stress or abnormal operating conditions, and under - voltage situations, where a drop in supply voltage could lead to inefficient motor operation or even stalling.

There are two fundamental approaches to starting a three - phase induction motor. One method involves connecting the motor directly to the full supply voltage. The other approach entails applying a reduced voltage to the motor at startup. It's important to note that the torque produced by an induction motor is proportional to the square of the applied voltage. Consequently, a motor generates significantly more torque when started at full voltage compared to when it is started with reduced voltage.

For cage induction motors, which are widely used in industrial and commercial applications, there are three main starting methods:

Starting Methods for Induction Motors
Direct - on - Line Starter

The direct - on - line (DOL) starter method for induction motors is renowned for its simplicity and cost - effectiveness. With this approach, the motor is directly connected to the full supply voltage. This straightforward method is typically employed for small motors with a rating of up to 5 kW. By using a DOL starter for these smaller motors, potential fluctuations in the supply voltage can be minimized, ensuring stable operation of the electrical system.

Star - Delta Starter

The star - delta starter is one of the most common and widely adopted methods for starting three - phase induction motors. In normal operation, the motor's stator windings are configured in a delta connection. However, during the starting phase, the windings are initially connected in a star configuration. This star connection reduces the voltage applied to each winding, thereby limiting the starting current. Once the motor has gained sufficient speed, the windings are then switched to the delta connection, allowing the motor to operate at its full - rated performance.

Autotransformer Starter

Autotransformers can be used in either star - connected or delta - connected configurations. Their primary function in the context of induction motor starting is to limit the starting current. By adjusting the turns ratio of the autotransformer, the voltage supplied to the motor during startup can be reduced. This controlled reduction in voltage helps to mitigate the high inrush current that occurs when the motor is first energized, protecting both the motor and the electrical supply system.

The direct - on - line, star - delta, and autotransformer starters are specifically designed for cage rotor induction motors, which are prevalent in a wide range of industrial and commercial applications due to their robust construction and reliable operation.

Slip Ring Induction Motor Starter Method

For slip ring induction motors, the starting process involves connecting the full supply voltage across the starter. The unique design of slip ring motors, with their external rotor circuits, allows for additional control during starting. The connection diagram of a slip ring induction motor starter provides a visual representation of how the various components interact to facilitate the starting process, enabling better understanding of its operation and control mechanisms.

When starting a slip ring induction motor, the full starting resistance is initially connected in the rotor circuit. This effectively reduces the supply current drawn by the stator, minimizing the inrush current that could otherwise stress the electrical system and the motor itself. As the electrical supply energizes the motor, the rotor begins to rotate.

As the motor accelerates, the rotor resistances are systematically reduced in stages. This gradual cutting - out of the resistances is carefully coordinated with the increase in the motor's rotational speed. By doing so, the motor can smoothly build up its speed while maintaining optimal torque characteristics.

Once the motor reaches its rated full - load speed, all the starting resistances are completely removed from the circuit. At this point, the slip rings are short - circuited. This short - circuiting allows the motor to operate with maximum efficiency, as it eliminates the additional resistance that was only necessary during the starting phase, enabling the motor to deliver its full - rated performance.

Give a tip and encourage the author!
Recommended
SST Technology: Full-Scenario Analysis in Power Generation, Transmission, Distribution, and Consumption
SST Technology: Full-Scenario Analysis in Power Generation, Transmission, Distribution, and Consumption
I. Research BackgroundPower System Transformation NeedsChanges in energy structure are placing higher demands on power systems. Traditional power systems are transitioning toward new-generation power systems, with the core differences between them outlined as follows: Dimension Traditional Power System New-Type Power System Technical Foundation Form Mechanical Electromagnetic System Dominated by Synchronous Machines and Power Electronic Equipment Generation-Side Form M
Echo
10/28/2025
Rectifier vs Power Transformer: Key Differences
Rectifier vs Power Transformer: Key Differences
Differences Between Rectifier Transformers and Power TransformersRectifier transformers and power transformers both belong to the transformer family, but they differ fundamentally in application and functional characteristics. The transformers commonly seen on utility poles are typically power transformers, while those supplying electrolytic cells or electroplating equipment in factories are usually rectifier transformers. Understanding their differences requires examining three aspects: working
Echo
10/27/2025
SST Transformer Core Loss Calculation and Winding Optimization Guide
SST Transformer Core Loss Calculation and Winding Optimization Guide
SST High-Frequency Isolated Transformer Core Design and Calculation Material Characteristics Impact:Core material exhibits varying loss behavior under different temperatures, frequencies, and flux densities. These characteristics form the foundation of overall core loss and require precise understanding of nonlinear properties. Stray Magnetic Field Interference:High-frequency stray magnetic fields around windings can induce additional core losses. If not properly managed, these parasitic losses
Dyson
10/27/2025
Upgrade Traditional Transformers: Amorphous or Solid-State?
Upgrade Traditional Transformers: Amorphous or Solid-State?
I. Core Innovation: A Dual Revolution in Materials and StructureTwo key innovations:Material Innovation: Amorphous AlloyWhat it is: A metallic material formed by ultra-rapid solidification, featuring a disordered, non-crystalline atomic structure.Key Advantage: Extremely low core loss (no-load loss), which is 60%–80% lower than that of traditional silicon steel transformers.Why it matters: No-load loss occurs continuously, 24/7, throughout a transformer’s lifecycle. For transformers with low loa
Echo
10/27/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.