• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What causes high hysteresis losses in transformers at low frequencies?

Encyclopedia
Encyclopedia
Field: Encyclopedia
0
China

The reason why hysteresis loss is higher in transformers at low frequencies is primarily due to the characteristics of the hysteresis effect itself, rather than low-frequency saturation. Here is a detailed explanation:

Basic Concept of Hysteresis Loss

Hysteresis loss is the energy loss that occurs in the transformer core due to the flipping of magnetic domains during the magnetization process. The magnitude of hysteresis loss depends on the area of the hysteresis loop, which represents the magnetization curve. A larger hysteresis loop area results in higher hysteresis loss.

Reasons for Higher Hysteresis Loss at Low Frequencies

Larger Hysteresis Loop Area:

At low frequencies, the magnetization frequency is lower, and the magnetic changes occur more slowly within each cycle. This means that the magnetic domains have more time to flip, resulting in a larger hysteresis loop area.

A larger hysteresis loop area directly leads to increased hysteresis loss.

Increased Magnetization Depth:

At low frequencies, the magnetic field changes more slowly, increasing the depth of magnetization. This means that a larger portion of the core participates in the magnetization process, increasing the number and range of domain flips, and thus increasing hysteresis loss.

Slower Magnetic Intensity Change:

At low frequencies, the rate of change of the magnetic field is slower, leading to a slower change in magnetic intensity. This results in greater resistance to domain flipping, causing each flip to consume more energy.

Distinction from Low-Frequency Saturation

Low-Frequency Saturation: Low-frequency saturation refers to the tendency for the magnetic flux density to reach saturation levels more easily at low frequencies due to the slower magnetic field changes. In saturation, the permeability of the core decreases, and the magnetizing current increases sharply. However, this mainly affects eddy current losses, not hysteresis losses.

Hysteresis Loss: Hysteresis loss is primarily associated with the flipping of magnetic domains and not with whether the magnetic flux density reaches saturation. Even in unsaturated conditions, low frequency can still lead to increased hysteresis loss.

Summary of Influencing Factors

  • Magnetization Frequency: At low frequencies, the magnetization frequency is lower, giving magnetic domains more time to flip, thereby increasing the hysteresis loop area.

  • Magnetization Depth: At low frequencies, the magnetization depth increases, involving more of the core in the magnetization process.

  • Magnetic Intensity Change: At low frequencies, the change in magnetic intensity is slower, increasing the resistance to domain flipping and the energy consumed per flip.

Conclusion

The primary reason for higher hysteresis loss in transformers at low frequencies is the larger hysteresis loop area, which results from the increased time available for domain flipping, increased magnetization depth, and slower magnetic intensity changes. While low-frequency saturation can also affect transformer performance, it primarily influences eddy current losses rather than hysteresis losses.

Give a tip and encourage the author!
Recommended
How to Identify Internal Faults in a Transformer?
How to Identify Internal Faults in a Transformer?
Measure DC resistance: Use a bridge to measure the DC resistance of each high- and low-voltage winding. Check whether the resistance values among phases are balanced and consistent with the manufacturer’s original data. If phase resistance cannot be measured directly, line resistance may be measured instead. The DC resistance values can indicate whether the windings are intact, whether there are short circuits or open circuits, and whether the contact resistance of the tap changer is normal. If
Felix Spark
11/04/2025
What are the requirements for inspecting and maintaining a transformer's no-load tap changer?
What are the requirements for inspecting and maintaining a transformer's no-load tap changer?
The tap changer operating handle shall be equipped with a protective cover. The flange at the handle shall be well sealed with no oil leakage. Locking screws shall securely fasten both the handle and the drive mechanism, and the handle rotation shall be smooth without binding. The position indicator on the handle shall be clear, accurate, and consistent with the tap voltage regulation range of the winding. Limit stops shall be provided at both extreme positions. The insulating cylinder of the t
Leon
11/04/2025
How to Overhaul a Transformer Conservator (Oil Pillow)?
How to Overhaul a Transformer Conservator (Oil Pillow)?
Overhaul Items for Transformer Conservator:1. Ordinary-Type Conservator Remove the end covers on both sides of the conservator, clean rust and oil deposits from inner and outer surfaces, then apply insulating varnish to the inner wall and paint to the outer wall; Clean components such as the dirt collector, oil level gauge, and oil plug; Check that the connecting pipe between the explosion-proof device and the conservator is unobstructed; Replace all sealing gaskets to ensure good sealing with n
Felix Spark
11/04/2025
Why is it difficult to increase the voltage level?
Why is it difficult to increase the voltage level?
The solid-state transformer (SST), also known as a power electronic transformer (PET), uses voltage level as a key indicator of its technological maturity and application scenarios. Currently, SSTs have reached voltage levels of 10 kV and 35 kV on the medium-voltage distribution side, while on the high-voltage transmission side, they remain in the stage of laboratory research and prototype validation. The table below clearly illustrates the current status of voltage levels across different appli
Echo
11/03/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.