• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Lissajous Patterns of CRO or Cathode Ray Oscilloscope

Electrical4u
Electrical4u
Field: Basic Electrical
0
China

What Are The Lissajous Patterns Of Cro

Cathode Ray Oscilloscope (CRO) is very important electronic device. CRO is very useful to analyze the voltage wave form of different signals. The main part of CRO is CRT (Cathode Ray Tube). A simple CRT is shown in figure below-
cathode ray oscilloscope

When both pairs of the deflection plates (horizontal deflection plates and vertical deflection plates) of CRO (Cathode Ray Oscilloscope) are connected to two sinusoidal voltages, the patterns appear at CRO screen are called the Lissajous pattern.
Shape of these Lissajous pattern changes with changes of phase difference between signal and ration of frequencies applied to the deflection plates (traces) of CRO. Which makes these Lissajous patterns very useful to analysis the signals applied to deflection plated of CRO. These lissajous patterns have two Applications to analysis the signals. To calculate the phase difference between two sinusoidal signals having same frequency. To determine the ratio frequencies of sinusoidal signals applied to the vertical and horizontal deflecting plates.

Calculation of the phase difference between two Sinusoidal Signals having same frequency

When two sinusoidal signals of same frequency and magnitude are applied two both pairs of deflecting plates of CRO, the Lissajous pattern changes with change of phase difference between signals applied to the CRO.
For different value of phase differences, the shape of Lissajous patterns is shown in figure below,

SL No. Phase angle difference ‘ø’ Lissajous Pattern appeared at CRO Screen
1 0o & 360o
2 30o or 330o
3 45o or 315o
4 60o or 300o
5 90o or 270o
6 120o or 240o
7 150o or 210o
8 180o

There are two cases to determine the phase difference ø between two signals applied to the horizontal and vertical plates,

Case – I: When, 0 < ø < 90o or 270o < ø < 360o : –
As we studied above it clear that when the angle is in the range of 0 < ø < 90o or 270o < ø < 360o, the Lissajous pattern is of the shape of Ellipse having major axis passing through origin from first quadrant to third quadrant:
Let’s consider an example for 0 < ø < 90o or 270o < ø < 360o, as shown in figure below,
Lissajous Patterns of CRO
In this condition the phase difference will be,

Another possibility of phase difference,

From Above given Lissajous pattern

Another Possibility of Phase Difference,

Case – II: When 90o < ø < 180o or 180o < ø < 270o
Lissajous Patterns of CRO
As we studied above it Clear that when the angle is in the range of 0o < ø < 90o or 270o < ø < 360o, the Lissajous Pattern is of the shape of Ellipse having major axis passing through origin from second quadrant to fourth quadrant:
Let’s consider an example for When, 90o < ø < 180o or 180o < ø < 270o, as shown in figure below,
In this condition the phase difference will be,

Another possibility of phase difference,
From Above given Lissajous pattern

Another Possibility of Phase Difference,
To determine the ratio of frequencies of signal applied to the vertical and horizontal deflecting plates:
To determine the ratio of frequencies of signal by using the Lissajous pattern, simply draw arbitrary horizontal and vertical line on lissajous pattern intersecting the Lissajous pattern. Now count the number of horizontal and vertical tangencies by Lissajous pattern with these horizontal and vertical line.
Then the ratio of frequencies of signals applied to deflection plates,

Or,

Let consider some example to clear the concept in details:

Examples Lissajous Pattern


Sl No. Lissajous Pattern Ratio of Frequencies fy/fx
1 fy/fx = 4/2 = 2
2 fy/fx = 3/1 = 3
3 fy/fx = 6/4 = 3/2
4 fy/fx = 6/8 = 3/4
5


fy/fx = 4/3

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.


Give a tip and encourage the author!
Recommended
THD Measurement Error Standards for Power Systems
THD Measurement Error Standards for Power Systems
Error Tolerance of Total Harmonic Distortion (THD): A Comprehensive Analysis Based on Application Scenarios, Equipment Accuracy, and Industry StandardsThe acceptable error range for Total Harmonic Distortion (THD) must be evaluated based on specific application contexts, measurement equipment accuracy, and applicable industry standards. Below is a detailed analysis of key performance indicators in power systems, industrial equipment, and general measurement applications.1. Harmonic Error Standar
Edwiin
11/03/2025
Busbar-Side Grounding for 24kV Eco-Friendly RMUs: Why & How
Busbar-Side Grounding for 24kV Eco-Friendly RMUs: Why & How
Solid insulation assistance combined with dry air insulation is a development direction for 24 kV ring main units. By balancing insulation performance and compactness, the use of solid auxiliary insulation allows passing insulation tests without significantly increasing phase-to-phase or phase-to-ground dimensions. Encapsulation of the pole can address the insulation of the vacuum interrupter and its connected conductors.For the 24 kV outgoing busbar, with the phase spacing maintained at 110 mm,
Dyson
11/03/2025
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
Ring main units (RMUs) are used in secondary power distribution, directly connecting to end-users such as residential communities, construction sites, commercial buildings, highways, etc.In a residential substation, the RMU introduces 12 kV medium voltage, which is then stepped down to 380 V low voltage through transformers. The low-voltage switchgear distributes electrical energy to various user units. For a 1250 kVA distribution transformer in a residential community, the medium-voltage ring m
James
11/03/2025
What Is THD? How It Affects Power Quality & Equipment
What Is THD? How It Affects Power Quality & Equipment
In the field of electrical engineering, the stability and reliability of power systems are of paramount importance. With the advancement of power electronics technology, the widespread use of nonlinear loads has led to an increasingly serious problem of harmonic distortion in power systems.Definition of THDTotal Harmonic Distortion (THD) is defined as the ratio of the root mean square (RMS) value of all harmonic components to the RMS value of the fundamental component in a periodic signal. It is
Encyclopedia
11/01/2025
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.