Sensor | Types of Sensor

Electrical4u
03/28/2024

What Is A Sensor

Let us consider a measurement system. It is composed of an input device which senses the environment or surrounding to generate an output and, a signal processing block which processes the signal from input device and an output device which presents the signal to human or machine operator in a more readable and usable form.
measuring system
The initial stage is input device which is mainly what we are going to discuss in this chapter.

Sensor

A sensor is a device that responds to any change in physical phenomena or environmental variables like heat, pressure, humidity, movement etc. This change affects the physical, chemical or electromagnetic properties of the sensors which is further processed to a more usable and readable form. Sensor is the heart of a measurement system. It is the first element that comes in contact with environmental variables to generate an output.

The signal produced by the sensor is equivalent to the quantity to be measured. Sensors are used to measure a particular characteristic of any object or device. For example a thermocouple, a thermocouple will sense heat energy (temperature) at one of its junction and produce equivalent output voltage which can be measured by a voltage read by the voltmeter.
All sensors need to be calibrated with respect to some reference value or standard for accurate measurement. Below is the figure of a thermocouple.

Note that a transducer and a sensor are not the same. In the above given example of thermocouple. The thermocouple acts as a transducer but the additional circuits or components needed like the voltmeter, a display etc together from a temperature sensor.

Hence the transducer will just convert the energy from one form to another and all the remaining work is done by the additional circuits connected. This whole device forms a sensor. Sensors and transducers are closely related to each other.

Characteristics of Sensors

A good sensor should have the following characteristics

  1. High Sensitivity: Sensitivity indicates how much the output of the device changes with unit change in input (quantity to be measured). For example the voltage of a temperature sensor changes by 1mV for every 1oC change in temperature than the sensitivity of the sensor is said to be 1mV/oC.

  2. Linearity: The output should change linearly with the input.

  3. High Resolution: Resolution is the smallest change in the input that the device can detect.

  4. Less Noise and Disturbance.

  5. Less power consumption.

Types of Sensors

Sensors are classified based on the nature of quantity they measure. Following are the types of sensors with few examples.

Sensor classification

Based on the quantity being measured

  • Temperature: Resistance Temperature Detector (RTD), Thermistor, Thermocouple

  • Pressure: Bourdon tube, manometer, diaphragms, pressure gauge

  • Force/ torque: Strain gauge, load cell

  • Speed/ position: Tachometer, encoder, LVDT

  • Light: Photo-diodeLight dependent resistor

And so on.
(2) Active and passive sensors: Based on power requirement sensors can be classified as active and passive. Active sensors are those which do not require external power source for their functioning. They generate power within themselves to operate and hence called as self-generating type. The energy for functioning is derived from the quantity being measured. For example piezoelectric crystal generate electrical output (charge) when subjected to acceleration.

Passive sensors require external power source for their functioning. Most of the resistive, inductive and capacitive sensors are passive (just as resistors, inductors and capacitors are called passive devices).

(3) Analog and digital sensor: An analog sensor converts the physical quantity being measured to analog form (continuous in time). Thermocouple, RTD, Strain gauge are called analog sensors. A digital sensor produces output in the form of pulse. Encoders are example of digital sensors.

(4) Inverse sensors: There are some sensors which are capable of sensing a physical quantity to convert it to other form and also sense the output signal form to get back the quantity in original form. For example a piezoelectric crystal when subjected to vibration generates voltage. At the same time when a piezo crystal is subjected to varying voltage they begin to vibrate. This property make them suitable to use in microphone and speakers.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!