• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Difference Between Real Ground and Virtual Ground

Encyclopedia
Field: Encyclopedia
0
China

Real Ground vs. Virtual Ground: Definitions and Applications

In the realm of electrical engineering, the concepts of real ground and virtual ground play distinct yet essential roles. Real ground establishes a tangible physical connection between the metallic body of an electrical device and the Earth, typically achieved through an Earth Continuity Conductor (ECG), Grounding Electrode Conductor (GEC), or other equivalent means. On the other hand, virtual ground is an abstract concept primarily utilized in operational amplifiers (op - amps). In this context, a specific node within the circuit is considered to have the same electrical potential as the actual ground terminal, despite lacking a direct physical connection to it.

Real Ground

A real ground, also known as actual ground or earth ground, is a fundamental element in electrical systems, representing a direct physical link to the Earth or a common reference point. Its primary function is to enhance safety by providing a low - resistance pathway for fault currents to flow into the ground. This mechanism effectively prevents electrical shocks by diverting potentially hazardous currents away from users and equipment. In circuit schematics, real ground is conventionally denoted by the ground symbol (⏚ or ⏋).

In compliance with the National Electrical Code (NEC) Article 250, all metallic and exposed components of electrical systems must be connected to a ground rod through an Equipment Grounding Conductor (EGC) and a Grounding Electrode Conductor (GEC). This mandatory connection ensures that any unexpected electrical currents resulting from faults are safely channeled into the ground. Additionally, within electrical panels, the neutral wire is commonly bonded to the earth ground, further reinforcing the system's safety and stability. In standard electrical wiring installations, a green - colored or bare conductor is typically employed for grounding purposes, facilitating easy identification.

While the International Electrotechnical Commission (IEC) and BS 7671 standards share the same underlying principles and objectives as the NEC and Canadian Electrical Code (CEC) regarding earthing, they use different terminologies. For example, under these standards, the metallic parts of electrical equipment are connected to an earth plate via an Earth Continuity Conductor (ECC). A wire with a green or green - with - yellow - stripe color is designated for the Protective Earth (PE) function, serving the same critical safety purpose as the grounding conductors specified in other codes.

image.png

In short, V2 does not sink current because the current at node V2 flows through the feedback resistor (Rf) and VOUT due to the high resistance of “R” in the op-amp. Therefore, the V2 node acts as a virtual ground, while V1 is connected to the real ground.

Key Differences Between Real and Virtual Ground

The following comparison table shows the main differences between virtual and real ground.

image.png


Give a tip and encourage the author!

Recommended

Classification of Equipment Defects for Relay Protection and Safety Automatic Devices in Substations
In daily operations, various equipment defects are inevitably encountered. Whether maintenance personnel, operation and maintenance staff, or specialized management personnel, all must understand the defect classification system and adopt appropriate measures according to different situations.According to Q/GDW 11024-2013 "Operation and Management Guide for Relay Protection and Safety Automatic Devices in Smart Substations," equipment defects are classified into three levels based on severity an
12/15/2025
Under What Conditions Will the Line Circuit Breaker Auto-Reclosing Signal Be Locked Out?
The line circuit breaker auto-reclosing signal will be locked out if any of the following conditions occur:(1) Low SF6 gas pressure in circuit breaker chamber at 0.5MPa(2) Insufficient energy storage in circuit breaker operating mechanism or low oil pressure at 30MPa(3) Busbar protection operation(4) Circuit breaker failure protection operation(5) Line distance protection zone II or zone III operation(6) Short lead protection operation of circuit breaker(7) Presence of remote tripping signal(8)
12/15/2025
Application of Auto-Reclosing Residual Current Protective Devices in Lightning Protection for Communication Power Supplies
1. Power Interruption Problems Caused by RCD False Tripping During Lightning StrikesA typical communication power supply circuit is shown in Figure 1. A residual current device (RCD) is installed at the power supply input terminal. The RCD primarily provides protection against electrical equipment leakage currents to ensure personal safety, while surge protective devices (SPDs) are installed on power supply branches to protect against lightning intrusions. When lightning strikes occur, the senso
12/15/2025
Reclosing Charge Time: Why Does Reclosing Require Charging? What Effects Does Charging Time Have?
1. Function and Significance of Reclosing ChargingReclosing is a protective measure in power systems. After faults such as short circuits or circuit overloads occur, the system isolates the faulty circuit and then restores normal operation through reclosing. The function of reclosing is to ensure continuous operation of the power system, improving its reliability and safety.Before performing reclosing, the circuit breaker must be charged. For high-voltage circuit breakers, the charging time is g
12/15/2025
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.