• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Transformer Insulation Integrity and Protection Testing: Ensuring Reliability and Performance

Rockwell
Rockwell
Field: Manufacturing
China

Verification of Insulation Integrity

When a new or overhauled transformer is energized under open-circuit (no-load) conditions, switching surges—caused by operations such as opening or closing the no-load transformer circuit—can generate overvoltages. These reach 4.0–4.5 times the phase voltage if the neutral point is isolated or earthed through a Petersen coil, and up to 3.0 times the phase voltage when the neutral is solidly grounded. The full-voltage, no-load impact test deliberately subjects insulation to these switching overvoltages before service, exposing any weak spots in the transformer windings or auxiliary circuits.

Assessment of Differential Protection Performance

Energizing a de-energized, unloaded transformer produces inrush (magnetizing) currents reaching 6–8 times the rated current. Though this inrush decays relatively rapidly—typically to 0.25–0.5 times rated current within 0.5–1 second—total decay may take several seconds in small-to-medium units and 10–20 seconds in large transformers. Early-stage inrush can falsely trigger differential protection, preventing closure. Repeated no-load closing operations allow protection engineers to observe actual inrush waveforms, verify relay wiring, characteristic curves, and settings, and confirm proper differential protection operation under real inrush conditions.

Evaluation of Mechanical Strength

Substantial electromagnetic forces generated during inrush transients subject the transformer's core, windings, and structural components to mechanical stress. Repeated no-load closing tests verify that all internal and support structures can withstand these forces without deformation or damage.

Test Procedure Requirements

  • New Units: Five consecutive full-voltage no-load closing operations.

  • Overhauled Units: Three consecutive operations.

  • Test Interval: At least 5 minutes between operations.

  • On-Site Monitoring: Qualified technicians should observe the transformer throughout testing, checking for abnormalities (unusual sounds, vibrations, or thermal signs) and halting immediately if defects are detected.

These multiple impact tests ensure the transformer's insulation reliability, protection coordination, and mechanical robustness before continuous service.

Give a tip and encourage the author!
Recommended
What are the common faults encountered during the operation of power transformer longitudinal differential protection?
What are the common faults encountered during the operation of power transformer longitudinal differential protection?
Transformer Longitudinal Differential Protection: Common Issues and SolutionsTransformer longitudinal differential protection is the most complex among all component differential protections. Misoperations occasionally occur during operation. According to 1997 statistics from the North China Power Grid for transformers rated 220 kV and above, there were 18 incorrect operations in total, of which 5 were due to longitudinal differential protection—accounting for approximately one-third. Causes of
Felix Spark
11/05/2025
How to Identify Internal Faults in a Transformer?
How to Identify Internal Faults in a Transformer?
Measure DC resistance: Use a bridge to measure the DC resistance of each high- and low-voltage winding. Check whether the resistance values among phases are balanced and consistent with the manufacturer’s original data. If phase resistance cannot be measured directly, line resistance may be measured instead. The DC resistance values can indicate whether the windings are intact, whether there are short circuits or open circuits, and whether the contact resistance of the tap changer is normal. If
Felix Spark
11/04/2025
What are the requirements for inspecting and maintaining a transformer's no-load tap changer?
What are the requirements for inspecting and maintaining a transformer's no-load tap changer?
The tap changer operating handle shall be equipped with a protective cover. The flange at the handle shall be well sealed with no oil leakage. Locking screws shall securely fasten both the handle and the drive mechanism, and the handle rotation shall be smooth without binding. The position indicator on the handle shall be clear, accurate, and consistent with the tap voltage regulation range of the winding. Limit stops shall be provided at both extreme positions. The insulating cylinder of the t
Leon
11/04/2025
How to Overhaul a Transformer Conservator (Oil Pillow)?
How to Overhaul a Transformer Conservator (Oil Pillow)?
Overhaul Items for Transformer Conservator:1. Ordinary-Type Conservator Remove the end covers on both sides of the conservator, clean rust and oil deposits from inner and outer surfaces, then apply insulating varnish to the inner wall and paint to the outer wall; Clean components such as the dirt collector, oil level gauge, and oil plug; Check that the connecting pipe between the explosion-proof device and the conservator is unobstructed; Replace all sealing gaskets to ensure good sealing with n
Felix Spark
11/04/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.