• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Annunciation System Alarm Annunciator

Electrical4u
Electrical4u
Field: Basic Electrical
0
China

What Is Annunciation System Alarm Annunciator

In electrical and electronics systems, the word Annunciator means a device which announces the faults or unusual activities coming from the system or process associated with it.

What is Alarm Annunciator?

It is basically an audio visual warning system, which highlights the fault or mishap which is going on, or even before it happens. This is very necessary for safety concern also, and sometimes the warning comes before improper procedure which warns the operator to avoid unwanted accident etc. This is the basic concept of Alarm Annunciator, and the alarm annunciation system. Let us look at the operation of a typical alarm annunciator device.

Operation of Alarm Annunciator

Alarm Annunciation System

In order to understand the fundamental operation and connections of alarm Annunciator, we have to understand the basic concept of alarming system in process monitoring. Suppose, an electromagnetic coil is energized by power supply and acts as an electromagnet for certain application. Now, because of over voltage a portion of the coil has been burnt. As a consequence, the entire process associated with it gets hampered. So, when finding the very cause of this mishap, you have to check each and every part of the system in order to find and recognize the actual fault. Now think you have 50 such coils, which you have to monitor. In this case finding the actual faulty coil becomes very difficult and time consuming too.

But if you connect a bulb in series with the power supply of each coil, it glows if and only if the coil is energized and healthy. In this way, for 50 such electromagnetic coils you need to use 50 bulbs each of them connected in series with each of the individual coil through which you can monitor the processes by viewing the glow status of those bulbs. This is the basic and easiest model of process monitoring.
Alarm Annunciator is a centralized model, which gives audio visual signals for the faulty processes. Latest models of annunciators are based upon microprocessor or microcontroller circuitry, which ensures the maximum reliability as well as enhanced wide ranges of features and functionalities.

alarm annunciator


Connection of Alarm Annunciator

There are two types of connections for each annunciation system; they are input fault contacts and output relay changeover contacts. Input fault contacts are simple connection normally open (or NC Selectable) with respect to a common C contact. Usually these input fault contacts are potential free contacts. The logic is, if any fault contacts and the common contact C becomes short circuited by any means, the respective fascia or fault window will start blinking, and the output relay contact will changeover instantly.

connection of alarm annunciator

Suppose, you are using 8 windows annunciation system, which means you are monitoring 8 operations at a time, by the annunciation system. Let us think your fault 1 (F1) is assigned as over voltage alarm of motor 1 and your fault 2 (F2) is assigned as overheating of a motor 2 armature. You will connect an over voltage relay with motor 1 and a PTC thermistor relay with Motor 2, and the respective outputs (Normally open output, changes to close when faulty) of those relays will be connected across F1 (fault input) and C (common), and F2 (fault input) and C (common) of the annunciator system. Therefore, if the voltage of motor 1, is increased beyond the predefined safe level, the over voltage relay will operate and will make a closed loop between F1 and Common. So, the F1 window will start blinking which indicates the motor 1 is getting over voltage. At the same time, the annunciator relay will changeover, and if you connect a hooter previously with its output contacts, then the hooter will start alarming.

Similarly, if the armature temperature of motor 2 is increased beyond the predefined safe level, then the PTC thermistor relay will changeover and will make a loop path between F2 and Common C of annunciation system. So, the F2 window will start blinking which indicates the motor 2 is getting over heated. At the same time, the annunciator relay will changeover, and the hooter connected with its contacts, it will start alarming. Basically, the annunciator output relay changeover is common, irrespective of any faults. A single hooter is used for all fault windows. An auxiliary AC/DC supply is necessary to operate the annunciator and in modern annunciators, there is also a window and connection provided for monitoring its own auxiliary supply.

Modern Alarm Annunciators consist of a power supply unit SMPS, a programming unit CPU and other connections including fault contacts and facial display units. The blinking windows are generally acrylics, which are enlightened by LED with very low power consumption. Typically, annunciation effectively starts from 4 faults that is 4 windows, if the number of faults to be monitored is more than 64, it is preferable to install the programming unit CPU, power supply unit PSU and the display facial unit individually, which ensures the maximum accuracy and effectiveness.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!
Recommended
What Are the Factors Influencing the Impact of Lightning on 10kV Distribution Lines?
What Are the Factors Influencing the Impact of Lightning on 10kV Distribution Lines?
1. Induced Lightning OvervoltageInduced lightning overvoltage refers to the transient overvoltage generated on overhead distribution lines due to nearby lightning discharges, even when the line is not directly struck. When a lightning flash occurs in the vicinity, it induces a large amount of charge on the conductors—opposite in polarity to the charge in the thundercloud.Statistical data shows that lightning-related faults caused by induced overvoltages account for approximately 90% of total fau
Echo
11/03/2025
THD Measurement Error Standards for Power Systems
THD Measurement Error Standards for Power Systems
Error Tolerance of Total Harmonic Distortion (THD): A Comprehensive Analysis Based on Application Scenarios, Equipment Accuracy, and Industry StandardsThe acceptable error range for Total Harmonic Distortion (THD) must be evaluated based on specific application contexts, measurement equipment accuracy, and applicable industry standards. Below is a detailed analysis of key performance indicators in power systems, industrial equipment, and general measurement applications.1. Harmonic Error Standar
Edwiin
11/03/2025
Busbar-Side Grounding for 24kV Eco-Friendly RMUs: Why & How
Busbar-Side Grounding for 24kV Eco-Friendly RMUs: Why & How
Solid insulation assistance combined with dry air insulation is a development direction for 24 kV ring main units. By balancing insulation performance and compactness, the use of solid auxiliary insulation allows passing insulation tests without significantly increasing phase-to-phase or phase-to-ground dimensions. Encapsulation of the pole can address the insulation of the vacuum interrupter and its connected conductors.For the 24 kV outgoing busbar, with the phase spacing maintained at 110 mm,
Dyson
11/03/2025
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
Ring main units (RMUs) are used in secondary power distribution, directly connecting to end-users such as residential communities, construction sites, commercial buildings, highways, etc.In a residential substation, the RMU introduces 12 kV medium voltage, which is then stepped down to 380 V low voltage through transformers. The low-voltage switchgear distributes electrical energy to various user units. For a 1250 kVA distribution transformer in a residential community, the medium-voltage ring m
James
11/03/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.