How is the contradiction between the small grounding residual current and the neutral point displacement voltage exceeding the standard resolved?

Edwiin
07/28/2025

Contradiction Points
In automatic tracking arc suppression coils, the adjustment precision is high, the residual current is small, and the operation is close to the resonance point.
In an automatic tracking arc suppression coil grounding system, two factors must be considered:
  • Under normal operating conditions, the long-term voltage displacement of the neutral point should not exceed 15% of the system's nominal phase voltage;
  • In the case of a ground fault, the grounding residual current should be small to facilitate arc extinction.
As the tuning requirements for an arc suppression coil grounding system, it is necessary to ensure that the neutral point displacement voltage does not exceed 15% of the rated phase voltage during normal operation, while also making the detuning degree as small as possible. This is obviously contradictory.
Solution Points
Currently, a damping resistor is connected to the circuit of the automatic compensation arc suppression coil to resolve this contradiction.
During normal operation of the power grid, due to the presence of the damping resistor, the damping rate d of the resonant circuit increases significantly. Even if the detuning degree is 0 at this time, the neutral point displacement voltage can basically be controlled within the range specified by regulations.
When a ground fault occurs in the power grid, the damping resistor is short-circuited, so that the grounding residual current can be well compensated, basically resolving the contradiction between small grounding residual current and excessive neutral point displacement voltage beyond the specified range.
To prevent series resonance overvoltage, a damping resistor is added to the arc suppression coil grounding circuit to suppress the generation of resonance overvoltage, ensuring that the neutral point displacement voltage does not exceed 15% of the phase voltage during normal operation of the system.
Analysis Points
During normal operation of the power grid, the zero-sequence equivalent circuit of the power grid grounded via an arc suppression coil is a series resonant circuit, as shown in the following figure. In the figure, L and gₗ are the inductance and equivalent conductance of the arc suppression coil; C and g are the per-phase-to-ground capacitance and leakage conductance of the power grid; U₀₀ is the asymmetric voltage.
The neutral point displacement voltage derived from the above figure is:
To meet the requirements of regulations, the method of increasing the detuning degree ν to keep the system away from the resonance point is often adopted. However, as can be seen from the above formula, besides increasing the detuning degree ν, the method of increasing the damping rate d can also be used. Connecting a damping resistor in parallel or in series with the arc suppression coil aims to increase the damping rate of the power grid, thereby reducing the neutral point displacement voltage U0. When a ground fault occurs in the power grid, short-circuiting the damping resistor allows the ground residual current to be well compensated.
Key Points for Attention
To add a damping resistor, the forms of connecting the damping resistor in series with the arc suppression coil circuit or in parallel on the secondary side of the arc suppression coil can be adopted. When a single-phase ground fault occurs in the system, the neutral point voltage rises and the neutral point current increases. When the current exceeds the set value, the damping resistor should be quickly short-circuited to avoid burning it out. When the system returns to normal, the short-circuit point of the damping resistor should be disconnected in a timely manner, so that the damping resistor is normally connected in series to the arc suppression coil circuit again. Otherwise, the system may experience resonance overvoltage due to the loss of the damping resistor.
Edwiin

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

Sharing of Transformer Concepts and Terminology
Sharing of Transformer Concepts and Terminology
Sharing of Transformer Concepts and TerminologyThe zero-mode impedance of a load is infinite, and its line-mode impedance is also extremely large, approximately 100 times that of the line-mode impedance of the line.The capacitance to ground of a cable is 25-50 times that of an overhead line.The free oscillation frequency of transient capacitive current: 300-1500Hz for overhead lines and 1500-3000Hz for cables.Performance requirements for an external grounding transformer: Under normal power supp
Edwiin
07/28/2025
What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!