• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Types & Characteristics of Surge Arresters

Edwiin
Edwiin
Field: Power switch
China

Introduction

Atmospheric lightning strikes on overhead lines, bare conductors, or metallic structures in outdoor substations, as well as overvoltages caused by switching operations of equipment and networks (switching overvoltages), pose significant hazards to electrical equipment. To protect equipment and facilitate insulation coordination, surge arresters (also known as "lightning arresters") must be installed at the incoming/outgoing points of overhead lines and in close proximity to transformers, due to their limited spatial protection zone.

Types and Characteristics of Surge Arresters

The most common surge arresters are non-linear metal oxide (MO) resistor type, housed in porcelain or silicone rubber. These are connected in parallel with the protected equipment and grounded via the earth grid. Another construction type uses silicon carbide (SiC) resistors (valve-type arresters), though these are less prevalent today.

Key Electrical Characteristics:

  • Resealing Voltage: The voltage across the arrester at which the follow current is reliably interrupted after sparkover.

  • Maximum Continuous Operating Voltage (MCOV): The highest power-frequency voltage (50 Hz or 60 Hz) that the arrester can withstand indefinitely.

  • Rated Short-Circuit Current: The maximum short-circuit current the arrester can safely handle.

  • Nominal Discharge Current: Common values include 5 kA, 10 kA, and 20 kA, indicating the arrester’s capacity to dissipate surge energy.

Surge arresters are connected between live conductors and ground. In installations with voltages above 52 kV, they may include discharge operation counters to monitor performance. An example of surge arresters is shown in Figure 1.

Additional Methods

In overhead lines and outdoor substations with voltages above 52 kV, it is common practice to install a lightning protection system comprising "lightning rods," "lightning aerial protection wires," or a combination of both.

LV Overvoltage Protection

Low Voltage (LV, where ) equipment, particularly electronic and informatics systems, is highly susceptible to severe damage from lightning discharges that propagate through cables or building structures.

To mitigate such risks, power surge protectors (SPDs) are typically installed in LV switchboards. These devices feature standard nominal discharge currents of 5 kA, 10 kA, and 20 kA, with some advanced models capable of handling 30–70 kA.

Similar to surge arresters, SPDs are connected between live conductors and ground, as illustrated in Figure 4. This configuration diverts surge currents away from sensitive equipment, ensuring protection against overvoltage events.

Give a tip and encourage the author!
Recommended
Relay Protection Types in Substations: A Complete Guide
Relay Protection Types in Substations: A Complete Guide
(1) Generator Protection:Generator protection covers: phase-to-phase short circuits in stator windings, stator ground faults, inter-turn short circuits in stator windings, external short circuits, symmetrical overload, stator overvoltage, single- and double-point grounding in the excitation circuit, and loss of excitation. Tripping actions include shutdown, islanding, limiting fault impact, and alarm signaling.(2) Transformer Protection:Power transformer protection includes: phase-to-phase short
Echo
11/05/2025
THD Measurement Error Standards for Power Systems
THD Measurement Error Standards for Power Systems
Error Tolerance of Total Harmonic Distortion (THD): A Comprehensive Analysis Based on Application Scenarios, Equipment Accuracy, and Industry StandardsThe acceptable error range for Total Harmonic Distortion (THD) must be evaluated based on specific application contexts, measurement equipment accuracy, and applicable industry standards. Below is a detailed analysis of key performance indicators in power systems, industrial equipment, and general measurement applications.1. Harmonic Error Standar
Edwiin
11/03/2025
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
How Vacuum Tech Replaces SF6 in Modern Ring Main Units
Ring main units (RMUs) are used in secondary power distribution, directly connecting to end-users such as residential communities, construction sites, commercial buildings, highways, etc.In a residential substation, the RMU introduces 12 kV medium voltage, which is then stepped down to 380 V low voltage through transformers. The low-voltage switchgear distributes electrical energy to various user units. For a 1250 kVA distribution transformer in a residential community, the medium-voltage ring m
James
11/03/2025
Why Monitoring Accuracy Matters in Power Quality Systems
Why Monitoring Accuracy Matters in Power Quality Systems
The Critical Role of Monitoring Accuracy in Power Quality Online DevicesThe measurement accuracy of online power quality monitoring devices is the core of the power system’s “perception capability,” directly determining the safety, economy, stability, and reliability of power supply to users. Inadequate accuracy leads to misjudgment, incorrect control, and flawed decision-making—potentially causing equipment damage, economic losses, or even grid failures. Conversely, high accuracy enables precis
Oliver Watts
10/30/2025
Related Products
Send inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.