• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Digital Twin-Driven Smart Manufacturing: Next-Gen Intelligent Solutions for Dry-Type Transformers

Rockwill
17yrs 700++ staff 108000m²+m² US$150,000,000+ China

Digital Twin-Driven Smart Manufacturing: Next-Gen Intelligent Solutions for Dry-Type Transformers

Amidst the dual waves of energy transition and smart manufacturing, Dry-Type Transformers are rapidly evolving towards digitization and intelligence. Our proposed "Digital Twin Dry-Transformer Ecosystem" integrates cutting-edge technologies to establish an intelligent, closed-loop management system covering the entire equipment lifecycle, propelling the industry into a new era of future smart manufacturing.

Core Technology Integration Solutions

  1. Intelligent Prognostics and Health Management (iPHM Pro)
    • Multi-source Heterogeneous Sensing Network:​ Deploy edge-intelligent sensor clusters to collect critical indicators such as winding hotspot temperature, core vibration spectrograms, and partial discharge spectra in real-time.
    • AI-Driven Failure Prediction Engine:​ Combines deep learning with physical mechanism models to construct the transformer's "health fingerprint." Achieves failure warning accuracy exceeding 92%, increases maintenance response efficiency by 40%, and reduces unplanned downtime by 50%.
    • Digital Twin Mirror:​ Creates a high-fidelity virtual replica to simulate insulation aging and electromagnetic stress changes under actual operating conditions, enabling a transition from "predictive maintenance" to "preventive optimization."
  2. AI Energy Efficiency Optimization Hub (EcoOptim AI)
    • Dynamic Voltage Regulation Algorithm Library:​ Utilizes reinforcement learning models to dynamically select the optimal tap position based on real-time load fluctuations (±5% accuracy), grid voltage quality, and ambient temperature/humidity parameters (empirically proven electricity savings of 2.8%-5.2%).
    • Loss Cloud Optimization Platform:​ Synchronously analyzes copper/iron loss composition and load curves to generate customized economic operation strategies, achieving an annual comprehensive energy efficiency improvement rate exceeding 3.5%.
  3. Blockchain-Powered Trusted Carbon Footprint Platform (GreenChain)
    • End-to-End Data On-Chain:​ Employs lightweight IoT devices + blockchain nodes to achieve immutable recording of carbon data throughout the entire process – from silicon steel/epoxy resin procurement, production energy consumption, transport mileage, to decommissioning and recycling.
    • Zero-Knowledge Proof Verification:​ Enables third-party verification of carbon footprint authenticity using zk-SNARKs technology, meeting ESG audit requirements with 100% traceability of carbon emissions data.
    • Green Credits Incentive:​ Automatically generates carbon reduction certificates based on on-chain data for access to carbon trading markets to secure additional revenue.

Digital Twin Ecosystem Operational Logic

Physical World Sensor Data → Edge Computing Node Preprocessing → Real-Time Mapping on Digital Twin →
AI Hub (PHM + Energy Optimization) → Optimization Instructions Fed Back to Physical Device || Blockchain Data Synchronously Recorded

Customer Value Matrix

Dimension

Traditional Solution

This Digital Twin Solution

Failure Downtime Cost

Avg. Annual Loss ≥ $50k

Reduced by 65%

Energy Efficiency

Fixed Tap Position Adjustment

Dynamically Optimized, Saves ≥3%

Carbon Management

Manual Reporting, Questionable Credibility

Full-Chain Traceability, Complies w/ ISO 14067

Asset Lifespan

Design Lifespan 20 Years

Predicted Life Extension 15%-18%

Implementation Path

  1. Phase 1:​ Deploy edge sensing network + basic twin model (6-8 weeks)
  2. Phase 2:​ Integrate AI optimization algorithms and blockchain nodes (4 weeks)
  3. Phase 3:​ System integration testing and operator VR training (2 weeks)
07/04/2025
Recommended
Solution for Medium-Voltage Motor Control and Protection Using Vacuum Contactor-Fuse (VCF) in a Coal Conveying System
Project BackgroundA coal conveying system comprises 15 belt conveyors driven by medium-voltage motors. The system operates under complex conditions, with motors often subjected to heavy loads and frequent starts. To address these challenges and achieve effective control and reliable protection during motor startup, the project comprehensively adopts Vacuum Contactor-Fuse (VCF) combination devices for the 6kV medium-voltage motor power distribution. This solution details the technical features,
ABB Vacuum Contactor KC2 Power Supply System Technical Transformation Plan
Issue Overview​The 10kV air compressor starting system of a company utilizes the ABB vacuum contactor KC2 as the control component for the operating circuit. The dedicated wide-voltage power supply module paired with this contactor presents the following issues:​Frequent failures: The power supply module fails to properly transition the voltage from 300V to 12V, resulting in fuse blowouts.​Poor heat dissipation: Enclosed installation of the module leads to insufficient heat dissipation, acceler
Dedicated Vacuum Contactor Solution for Port Shore Power Systems
I. Background and Challenges​Shore power systems have become core technical equipment for ports to reduce carbon emissions and noise pollution. However, these systems face two major challenges in the harsh operational environment of ports:​Severe Environmental Corrosion: High humidity and salt spray in port areas cause serious corrosion to metal components and enclosures of electrical equipment, significantly impacting electrical lifespan and operational reliability.​High Switching Requirements:
Vacuum Contactor Industrial Power Control Solutions
Application Background and Pain Point Analysis​In modern industrial manufacturing power control systems, traditional contactors exhibit significant limitations under specific operating conditions:• ​Frequent Start-Stop Operations: Traditional contactors have limited mechanical lifespan, with frequent operations leading to coil burnout and mechanical jamming.• ​Poor Adaptability to Harsh Environments: Contacts are prone to oxidation in dusty environments, resulting in increased contact
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.