• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Dynamic Reactive Power Compensation Solution for Electric Furnace Transformers

Rockwill
17yrs 700++ staff 108000m²+m² US$150,000,000+ China

Dynamic Reactive Power Compensation Solution for Electric Furnace Transformers

Electric furnaces (particularly arc furnaces and submerged arc furnaces) exhibit significant ​shock load characteristics​ during smelting processes, causing ​severe power factor fluctuations (typically between 0.6 and 0.8). This not only leads to grid voltage fluctuations, flicker, and harmonic pollution but also increases line losses and reduces grid power supply efficiency.

To address this challenge, this solution employs ​high-performance dynamic reactive power compensation devices (such as SVC/TSC or SVG), integrated with coordinated control of the electric furnace transformer:

  1. Real-time Monitoring & Dynamic Response: High-speed sensors continuously capture system parameters (power factor, voltage, current, etc.). Using advanced control algorithms (e.g., instantaneous reactive power theory), data analysis is completed within ​10~20ms, triggering compensation commands.
  2. Precise Reactive Power Regulation: Automatic switching of capacitor banks/reactors (TSC/TCR mode) or rapid IGBT-based reactive power output adjustment (SVG mode) responds to load changes. This dynamically stabilizes the power factor ​above 0.92​ and suppresses voltage flicker to within ​IEEE 519 standard limits.
  3. Synergistic Efficiency Optimization: The compensation device and transformer form a closed-loop control system, reducing transformer copper and iron losses, minimizing grid reactive power flow transmission, and collectively lowering ​line losses by 6%~15%.

Value Realization:

  • Enhanced Grid Stability: Reduces voltage fluctuations, preventing tripping of surrounding equipment during furnace operation.
  • Compliance with Power Quality Standards: Meets stringent industrial requirements (THD ≤ 5%, flicker Pst ≤ 1.0).
  • Reduced Operating Costs: Avoids utility power factor adjustment penalties and extends transformer lifespan.
  • Compatible Expansion Capability: Supports integration with Active Power Filters (APF) for combined "Reactive Power + Harmonic" management.

Typical Application Scenarios:
► Steelmaking Arc Furnaces ► Ferroalloy Submerged Arc Furnaces ► Si-Ca-Ba Smelting Furnaces ► Carbon Electrode Baking Furnaces

​Solution Advantage Description:

  1. Core Technology
    Utilizes fully digital control chips (e.g., DSP+FPGA architecture) for millisecond-level response, far exceeding the compensation speed (seconds) of traditional contactor switching. This accommodates the abrupt load changes characteristic of electric furnaces.
  2. Cost Optimization
    Designed for medium-voltage grids (6~35kV). Δ/Y-connected multi-stage capacitor bank configurations reduce per-unit capacity costs. Coordinated with transformer tap changers to minimize compensation device capacity requirements, lowering investment costs by over ​30%.
  3. Reliability Assurance
    Features built-in harmonic protection algorithms (auto-avoidance of 5th, 7th, 11th harmonic resonance points), temperature monitoring, and rapid arc-flash bypass protection. Achieves an equipment ​MTBF (Mean Time Between Failures) of 100,000 hours.
08/09/2025
Recommended
Solution for Medium-Voltage Motor Control and Protection Using Vacuum Contactor-Fuse (VCF) in a Coal Conveying System
Project BackgroundA coal conveying system comprises 15 belt conveyors driven by medium-voltage motors. The system operates under complex conditions, with motors often subjected to heavy loads and frequent starts. To address these challenges and achieve effective control and reliable protection during motor startup, the project comprehensively adopts Vacuum Contactor-Fuse (VCF) combination devices for the 6kV medium-voltage motor power distribution. This solution details the technical features,
ABB Vacuum Contactor KC2 Power Supply System Technical Transformation Plan
Issue Overview​The 10kV air compressor starting system of a company utilizes the ABB vacuum contactor KC2 as the control component for the operating circuit. The dedicated wide-voltage power supply module paired with this contactor presents the following issues:​Frequent failures: The power supply module fails to properly transition the voltage from 300V to 12V, resulting in fuse blowouts.​Poor heat dissipation: Enclosed installation of the module leads to insufficient heat dissipation, acceler
Dedicated Vacuum Contactor Solution for Port Shore Power Systems
I. Background and Challenges​Shore power systems have become core technical equipment for ports to reduce carbon emissions and noise pollution. However, these systems face two major challenges in the harsh operational environment of ports:​Severe Environmental Corrosion: High humidity and salt spray in port areas cause serious corrosion to metal components and enclosures of electrical equipment, significantly impacting electrical lifespan and operational reliability.​High Switching Requirements:
Vacuum Contactor Industrial Power Control Solutions
Application Background and Pain Point Analysis​In modern industrial manufacturing power control systems, traditional contactors exhibit significant limitations under specific operating conditions:• ​Frequent Start-Stop Operations: Traditional contactors have limited mechanical lifespan, with frequent operations leading to coil burnout and mechanical jamming.• ​Poor Adaptability to Harsh Environments: Contacts are prone to oxidation in dusty environments, resulting in increased contact
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.