Resistance Switching in a Circuit Breaker

Edwiin
05/23/2025

Resistance Switching
Resistance switching refers to the practice of connecting a fixed resistor in parallel with the contact gap or arc of a circuit breaker. This technique is applied in circuit breakers with high post-arc resistance in the contact space, primarily to mitigate re-striking voltages and transient voltage surges.
Severe voltage fluctuations in power systems arise from two main scenarios: interrupting low-magnitude inductive currents and breaking capacitive currents. Such overvoltages pose risks to system operation but can be effectively managed through resistance switching—achieved by connecting a resistor across the breaker contacts.
The underlying principle involves the parallel resistor diverting a portion of current during interruption, thereby limiting the rate of current change (di/dt) and suppressing the rise of transient recovery voltage. This not only reduces the probability of arc re-ignition but also dissipates arc energy more efficiently. Resistance switching is particularly critical in extra-high-voltage (EHV) systems for applications sensitive to switching overvoltages, such as de-energizing unloaded transmission lines or switching capacitor banks.

When a fault occurs, the circuit breaker contacts open, initiating an arc between them. As the arc is shunted by resistance R, a fraction of the arc current diverts through the resistor, reducing the arc current and accelerating the deionization rate of the arc channel.

This triggers a self-reinforcing cycle: as arc resistance increases, more current flows through shunt resistor R, further starving the arc of energy. This process continues until the current drops below the critical threshold for arc sustenance (as depicted in the figure below), at which point the arc extinguishes and the circuit breaker successfully interrupts the circuit.

The mechanism hinges on the shunt resistor dynamically regulating current distribution, forcing the arc into a vicious cycle of "current decay → accelerated deionization → rising arc resistance." This enables rapid recovery of dielectric strength in the arc channel—often before the current zero-crossing—making it particularly effective for suppressing high-frequency re-ignition overvoltages. Such functionality is critical in EHV circuit breakers during capacitive current interruption or small inductive current breaking.

Alternatively, the resistance can be automatically engaged by transferring the arc from the main contacts to the probe contacts— as seen in axial blast circuit breakers—with this action occurring in an extremely short time. By substituting the arc path with a metallic pathway, the current flowing through the resistance is limited, allowing for easy interruption.

The shunt resistor also plays a critical role in dampening the oscillatory growth of restriking voltage transients. Mathematically, it can be proven that the natural frequency (fn) of oscillations in the circuit shown is governed by: introducing a resistive element enhances the circuit's damping characteristics, reducing oscillation amplitude and retarding voltage rise rates. This is analogous to incorporating a dissipative branch into an LC oscillatory loop, transforming undamped oscillations into decaying ones and significantly improving breaker interruption stability.

In axial blast configurations, the rapid arc transfer ensures the resistor engages before current zero, providing damping control at the onset of the transient process. This design is particularly suited for EHV applications requiring switching overvoltage limitation, as the synergistic effect of resistance and arc enables ordered dissipation of electromagnetic energy during interruption.

Summary of Resistance Switching Functions
In summary, a resistor across circuit breaker contacts can perform one or more of the following functions:
Reduces RRRV (Rate of Rise of Restriking Voltage) on the Circuit Breaker
By diverting arc current and accelerating arc channel deionization, the resistor suppresses the rate of transient recovery voltage (TRV) rise, easing the dielectric strength recovery burden on the breaker interrupter.
Mitigates High-Frequency Restriking Voltage Transients during Inductive/Capacitive Load Switching
When interrupting inductive currents (e.g., unloaded transformers) or capacitive currents (e.g., charging cables), the shunt resistor limits oscillatory overvoltage amplitudes through energy dissipation, preventing insulation breakdown risks.
 Equalizes TRV Distribution in Multi-Break Circuit Breakers
In breakers with multiple interrupting gaps, the resistor ensures uniform TRV distribution across contact gaps via voltage division, avoiding re-ignition due to voltage concentration in any single gap.
Scenarios Where Resistance Switching Is Unnecessary
Conventional circuit breakers with low post-arc resistance in the contact space (e.g., medium/low-voltage air breakers) require no additional shunt resistors. Their arc channels naturally deionize rapidly enough to meet interrupting requirements without external resistance.
Technical Principle Analysis
The core value of resistance switching lies in its synergistic mechanism of "impedance matching-energy dissipation-damping oscillation," which controls switching transients within equipment withstand limits. This technology is particularly critical in EHV systems (110kV and above), effectively addressing:
  • Current chopping overvoltages during small current interruption
  • Re-ignition overvoltages during capacitive current breaking

These solutions overcome limitations of traditional arc extinction methods in transient overvoltage control.

Edwiin

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

Working Voltage in Power System
Working Voltage in Power System
Working VoltageThe term "working voltage" refers to the maximum voltage that a device can withstand without sustaining damage or burning out, while ensuring the reliability, safety, and proper operation of both the device and associated circuits.For long-distance power transmission, the use of high voltage is advantageous. In AC systems, maintaining a load power factor as close to unity as possible is also economically necessary. Practically, heavy currents are more challenging to handle than hi
Encyclopedia
07/26/2025
Frequency division method for measuring grid-to-ground insulation parameters
Frequency division method for measuring grid-to-ground insulation parameters
The frequency division method enables the measurement of grid-to-ground parameters by injecting a current signal of a different frequency into the open delta side of the potential transformer (PT).This method is applicable to ungrounded systems; however, when measuring the grid-to-ground parameters of a system where the neutral point is grounded via an arc suppression coil, the arc suppression coil must be disconnected from operation beforehand. Its measurement principle is shown in Figure 1.As
Leon
07/25/2025
The insulation parameters of the power grid to ground are measured by the tuning method
The insulation parameters of the power grid to ground are measured by the tuning method
The tuning method is suitable for measuring the ground parameters of systems where the neutral point is grounded via an arc suppression coil, but not applicable to ungrounded neutral point systems. Its measurement principle involves injecting a current signal with continuously varying frequency from the secondary side of the Potential Transformer (PT), measuring the returned voltage signal, and identifying the system's resonant frequency.During the frequency sweeping process, each injected heter
Leon
07/25/2025
Effect of Transition Resistance at the Grounding Point on the Rising Speed of Zero - sequence Voltage
Effect of Transition Resistance at the Grounding Point on the Rising Speed of Zero - sequence Voltage
In an arc - suppression coil grounding system, the rising speed of the zero - sequence voltage is greatly affected by the value of the transition resistance at the grounding point. The larger the transition resistance at the grounding point, the slower the rising speed of the zero - sequence voltage.In an ungrounded system, the transition resistance at the grounding point has basically no impact on the rising speed of the zero - sequence voltage.Simulation Analysis: Arc - suppression Coil Ground
Leon
07/24/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!