• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What is the application of reverse recovery characteristics?

Encyclopedia
Field: Encyclopedia
0
China

Application of Reverse Recovery Characteristics

The reverse recovery characteristic has important applications in power electronics, especially in circuits involving high-speed switching operations. Here are some key applications of the reverse recovery characteristic:

Reduce power loss

In the switching process of power diodes and MOSFET body diodes, the reverse recovery characteristics directly affect switching losses. By optimizing the reverse recovery characteristics, significant reductions in power losses of switching devices, diodes, and other circuit components can be achieved.

Reduce voltage spikes and electromagnetic interference (EMI)

Proper selection of the flyback diode characteristics can reduce the voltage spikes, interference (I), and electromagnetic interference (EMI) caused by the flyback diode. This helps to minimize or even eliminate the absorption circuit, thereby enhancing the stability and reliability of the circuit.

Improve the safety of the circuit

The di/dt (change rate of reverse recovery current) during the reverse recovery process is crucial for the safety of the circuit. A lower di/dt can reduce the induced electromotive force (VRM-VR) in the circuit inductance, lowering the overshoot voltage and thus protecting the diode and switch devices.

Optimize high-frequency characteristics

In high frequency applications, the reverse recovery time (trr) is a critical parameter. A shorter reverse recovery time helps improve the high frequency characteristics of the device, which is particularly important for modern pulse circuits and high frequency rectifier applications.

High-pressure high-power application scenarios

Silicon carbide (SiC) diodes have significant advantages in high-voltage and high-power applications due to their superior reverse recovery characteristics. The reverse recovery time of SiC diodes is typically less than 20 ns, and even under certain conditions, it can be less than 10 ns, making them suitable for high-voltage and high-frequency fields.

Replace traditional silicon-based FRDs

With the development of technology, SiC diodes are gradually replacing traditional silicon-based fast recovery diodes (FRDs). SiC diodes not only have faster reverse recovery speeds but also solve the problem of low reverse breakdown voltage of silicon-based Schottky diodes, giving them significant advantages in high-voltage and high-frequency fields.

To sum up, the reverse recovery characteristics have a wide range of applications in power electronics, from reducing power losses to enhancing the safety and reliability of circuits, and optimizing high-frequency characteristics and high-voltage large-power application scenarios.

Give a tip and encourage the author!

Recommended

Why Must a Transformer Core Be Grounded at Only One Point? Isn't Multi-Point Grounding More Reliable?
Why Does the Transformer Core Need to Be Grounded?During operation, the transformer core, along with the metal structures, parts, and components that fix the core and windings, are all situated in a strong electric field. Under the influence of this electric field, they acquire a relatively high potential with respect to ground. If the core is not grounded, a potential difference will exist between the core and the grounded clamping structures and tank, which may lead to intermittent discharge.I
01/29/2026
Understanding Transformer Neutral Grounding
I. What is a Neutral Point?In transformers and generators, the neutral point is a specific point in the winding where the absolute voltage between this point and each external terminal is equal. In the diagram below, pointOrepresents the neutral point.II. Why Does the Neutral Point Need Grounding?The electrical connection method between the neutral point and earth in a three-phase AC power system is called theneutral grounding method. This grounding method directly affects:The safety, reliabilit
01/29/2026
Voltage Imbalance: Ground Fault, Open Line, or Resonance?
Single-phase grounding, line break (open-phase), and resonance can all cause three-phase voltage unbalance. Correctly distinguishing among them is essential for rapid troubleshooting.Single-Phase GroundingAlthough single-phase grounding causes three-phase voltage unbalance, the line-to-line voltage magnitude remains unchanged. It can be classified into two types: metallic grounding and non-metallic grounding. Inmetallic grounding, the faulted phase voltage drops to zero, while the other two phas
11/08/2025
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic (PV) Power Generation SystemsA photovoltaic (PV) power generation system is primarily composed of PV modules, a controller, an inverter, batteries, and other accessories (batteries are not required for grid-connected systems). Based on whether it relies on the public power grid, PV systems are divided into off-grid and grid-connected types. Off-grid systems operate independently without relying on the utility grid. They are equipped with energy-s
10/09/2025
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.