Parallel Magnetic Circuit

Edwiin
05/28/2025

Definition of Parallel Magnetic Circuit
A parallel magnetic circuit is defined as a magnetic pathway with two or more branches for magnetic flux, analogous to a parallel electric circuit. Such circuits feature multiple flux paths with varying cross-sectional areas and materials, each potentially composed of different magnetic components.
Parallel Magnetic Circuit Analysis
The figure above depicts a parallel magnetic circuit, where a current-carrying coil is wound around the central limb AB. This coil generates a magnetic flux φ₁ in the central limb, which travels upward and splits into two parallel paths: ADCB and AFEB. The path ADCB conducts flux φ₂, while AFEB carries flux φ₃. As evident from the circuit:
Parallel Magnetic Circuit Characteristics
The two magnetic paths ADCB and AFEB form a parallel magnetic circuit, where the ampere-turns (ATs) required for the entire parallel circuit equal the ampere-turns needed for any single branch.
As is known, reluctance is defined as:
Parallel Magnetic Circuit MMF Calculation
Thus, the total magnetomotive force (MMF) or ampere-turns required for a parallel magnetic circuit equals the MMF of any single parallel path, as all branches experience the same applied MMF.
Incorrect Notation Clarification:
The total MMF is not the sum of individual paths (a common misconception). Instead, since parallel magnetic paths share the same applied MMF, the correct relation is:

Total MMF = MMF for path BA = MMF for path ADCB = MMF for path AFEB

Where φ1. Φ2, φ3 is the flux and S1, S2, S3 are the reluctances of the parallel path BA, ADCB and AFEB respectively.

Edwiin

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

What is the connection group of a transformer?
What is the connection group of a transformer?
Transformer Connection GroupThe connection group of a transformer refers to the phase difference between the primary and secondary voltages or currents. It is determined by the winding directions of the primary and secondary coils, the labeling of their start and end terminals, and the connection mode. Expressed in a clock-like format, there are 12 groups in total, numbered from 0 to 11.The DC method is commonly used to measure the transformer's connection group, mainly to verify whether the con
Vziman
07/26/2025
Working Voltage in Power System
Working Voltage in Power System
Working VoltageThe term "working voltage" refers to the maximum voltage that a device can withstand without sustaining damage or burning out, while ensuring the reliability, safety, and proper operation of both the device and associated circuits.For long-distance power transmission, the use of high voltage is advantageous. In AC systems, maintaining a load power factor as close to unity as possible is also economically necessary. Practically, heavy currents are more challenging to handle than hi
Encyclopedia
07/26/2025
What is the sequence for powering down the transformer?
What is the sequence for powering down the transformer?
The sequence for shutting down a main transformer is as follows: when de-energizing, the load side should be shut down first, followed by the power supply side. For energizing operations, the reverse order applies: the power supply side is energized first, then the load side. This is because: Energizing from the power supply side to the load side makes it easier to identify the fault range and take prompt judgment and handling measures in case of a fault, preventing the fault from spreading or e
Rockwell
07/26/2025
What are the methods for switching operations of station transformers?
What are the methods for switching operations of station transformers?
Let's take an auxiliary power system with two station transformers as an example. When one station transformer needs to be out of service, there are two operation methods: non-interruptive power supply and instantaneous power interruption. Generally, the method of instantaneous power interruption on the low-voltage side is preferred.The operation method for instantaneous power interruption on the low-voltage side is as follows:Open the 380V power incoming circuit breaker of the corresponding sec
Vziman
07/26/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!