What is Miniature Circuit Breaker?

Encyclopedia
09/09/2024


What is Miniature Circuit Breaker?


MCB Definition


An MCB is defined as an automatically operated switch that protects low voltage electrical circuits from excess current due to overload or short circuit.


Fuse vs MCB


Nowadays miniature circuit breakers (MCBs) are much more commonly used in low voltage electrical networks instead of fuses. The MCB has many advantages compared to a fuse:


  • It automatically switches off the electrical circuit during the abnormal conditions of the network (both overload and fault conditions). The MCB is much more reliable in the detection of such conditions, is it is more sensitive to change in current.



  • As the switch operating knob comes at its off position during tripping, the faulty zone of the electrical circuit can easily be identified. But in case of a fuse, the fuse wire should be checked by opening fuse grip or cutout from fuse base, for confirming the blow of fuse wire. Thus is it much detect if an MCB has been operated compared to a fuse.



  • Quick restoration of supply can not be possible in case of fuse, as fuses have to be rewirable or replaced for restoring the supply. But in the case of an MCB, quick restoration is possible by (literally) flipping a switch.



  • The handling of an MCB is more electrically safe than a fuse.



  • MCBs can be controlled remotely, whereas fuses can not.


Because of these many advantages of MCB over fuse units, in modern low voltage electrical network, the miniature circuit breaker is almost always used instead of a fuse.The only one disadvantage of MCB over fuse is that this system is costlier than a fuse unit system.


Working Principle Miniature Circuit Breaker


There are two ways an MCB operates: through the thermal effect of overcurrent and the electromagnetic effect of overcurrent. In thermal operation, a bimetallic strip heats and bends when continuous overcurrent flows through the MCB.


This deflection of the bimetallic strip releases a mechanical latch. As this mechanical latch is attached to the operating mechanism, it causes to open the miniature circuit breaker contacts.


During short circuits, the sudden rise in current causes the plunger in the tripping coil to move. This movement strikes the trip lever, immediately releasing the latch mechanism and opening the circuit breaker contacts. This explains the MCB’s working principle.


Miniature Circuit Breaker Construction


Miniature circuit breaker construction is very simple, robust and maintenance-free. Generally, an MCB is not repaired or maintained, it just replaced by a new one when required. A miniature circuit breaker has normally three main constructional parts. These are:


Frame of Miniature Circuit Breaker


The frame of a miniature circuit breaker is a molded case. This is a rigid, strong, insulated housing in which the other components are mounted.


Operating Mechanism of Miniature Circuit Breaker


The operating mechanism of a miniature circuit breaker provides the means of manual opening and closing operation of a miniature circuit breaker. It has three-positions “ON,” “OFF,” and “TRIPPED”. The external switching latch can be in the “TRIPPED” position if the MCB is tripped due to over-current.


When manually switch off the MCB, the switching latch will be in the “OFF” position. In the closed condition of an MCB, the switch is positioned at “ON”. By observing the positions of the switching latch one can determine the condition of MCB whether it is closed, tripped or manually switched off.


Trip Unit of Miniature Circuit Breaker


The trip unit is the main part, responsible for the proper working of the miniature circuit breaker. Two main types of trip mechanisms are provided in MCB. A bimetal provides protection against overload current and an electromagnet provides protection against short-circuit current.


Operation of Miniature Circuit Breaker


There are three mechanisms provided in a single miniature circuit breaker to make it switched off. If we carefully observe the picture beside, we will find there is mainly one bimetallic strip, one trip coil and one-hand operated on-off lever.


The electric current-carrying path of a miniature circuit breaker shown in the picture is as follows. First left-hand side power terminal – then bimetallic strip – then-current coil or trip coil – then moving contact – then fixed contact and – lastly right had side power terminal. All are arranged in series.


c9234a9a8708869bdb84718d3c7f964b.jpeg


If the circuit is overloaded for a long time, the bimetallic strip becomes overheated and deformed. This deformation of bimetallic strip causes, displacement of latch point. The moving contact of the MCB is so arranged by means of spring pressure, with this latch point, that a little displacement of latch causes, release of spring and makes the moving contact to move for opening the MCB.


The current coil or trip coil is placed in such a manner, that during short circuit fault the MMF of that coil causes its plunger to hit the same latch point and make the latch to be displaced. Hence the MCB will open in the same manner.


Again when the operating lever of the miniature circuit breaker is operated by hand, that means when we make the MCB at off position manually, the same latch point is displaced as a result moving contact separated from fixed contact in the same manner.


Regardless of the operating mechanism – e.g. due to the deformation of the bimetallic strip, or due to the increased MMF of the trip coil, or due to manual operation – the same latch point is displaced and same deformed spring is released. This is ultimately responsible for the movement of the moving contact. When the moving contact separated from fixed contact, there may be a high chance of arc.


This arc then goes up through the arc runner and enters into arc splitters and is finally quenched. When we switch on an MCB, we actually reset the displaced operating latch to its previous on position and make the MCB ready for another switch off or trip operation.


Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
What is Cathode Ray Oscilloscope (CRO)?
What is Cathode Ray Oscilloscope (CRO)?
What is Cathode Ray Oscilloscope (CRO)?DefinitionA cathode ray oscilloscope (CRO) is an electrical instrument for measuring, analyzing and visualizing waveforms and other electronic/electrical phenomena. As a high - speed X - Y plotter, it shows an input signal against another signal or time. Capable of analyzing waveforms, transient phenomena and time - varying quantities across a wide frequency range (from very low to radio frequencies), it mainly operates on voltage. Other physical quantities
Edwiin
07/25/2025
Analysis of the Technical Characteristics of Online Monitoring for Medium-Voltage Switchgear Status
Analysis of the Technical Characteristics of Online Monitoring for Medium-Voltage Switchgear Status
With the increasing complexity of power system operation environment and the deepening of power system reform, traditional power grids are accelerating the transformation to smart grids. The goal of equipment condition-based maintenance is achieved through real-time perception of equipment status by new sensors, reliable communication via modern network technology, and effective monitoring by background expert systems.I. Analysis of Condition-based Maintenance StrategyCondition-based Maintenance
Oliver Watts
06/11/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!