• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Working Principle of a Synchronous Motor

Edwiin
Field: Power switch
China
Structure and Excitation of Synchronous Motors
The synchronous motor consists of two primary components: the stator (stationary part) and the rotor (rotating part). The stator is energized by a three-phase AC supply, while the rotor is excited by a DC supply.
Excitation Principle:
Excitation refers to the process of inducing magnetic fields in both the stator and rotor, transforming them into electromagnets. This magnetic coupling is essential for converting electrical energy into mechanical rotation.

Magnetic Field Generation in Synchronous Motors
The three-phase AC supply induces alternating north and south poles in the stator. As the supply is sinusoidal, its wave polarity (positive/negative) reverses every half-cycle, causing the stator's north and south poles to alternate. This generates a rotating magnetic field in the stator.
The rotor's magnetic field is established by a DC supply, which fixes the polarity and creates a stationary magnetic field—meaning its north and south poles remain constant.
The rotational speed of the stator's magnetic field is called the synchronous speed, determined by the supply frequency and the motor's number of poles.

Magnetic Pole Interaction in Synchronous Motors
When opposite poles of the stator and rotor align, an attractive force arises between them, generating counterclockwise torque. Torque, as the rotational equivalent of force, drives the rotor to follow the stator's magnetic poles.
Following each half-cycle, the stator's pole polarity reverses. However, rotor inertia—its tendency to resist changes in motion—maintains its position. When like poles (north-north or south-south) align, a repulsive force creates clockwise torque.
To visualize this, consider a 2-pole motor: in the figure below, opposite stator-rotor poles (N-S or S-N) induce attractive forces, as shown.

After the half cycle, the poles on the stator reverse. The same pole of the stator and rotor face each other, and the force of repulsion develops between them.

The non-unidirectional torque pulsates the rotor only in one place and because of this reason the synchronous motor is not self-starting.

Starting Mechanism of Synchronous Motors
To initiate operation, the rotor is first spun by an external drive, aligning its polarity with the stator's rotating magnetic field. As the stator and rotor poles interlock, a unidirectional torque is generated, pulling the rotor to rotate at the synchronous speed of the stator's field.
Once synchronized, the motor runs at a constant speed equal to the synchronous speed, which is fixed by the supply frequency and number of poles.
Give a tip and encourage the author!
Recommended
Why Regular Transformer Maintenance Matters: 5 Serious Consequences of Neglecting It
I. Allowable TemperatureWhen a transformer is in operation, its windings and iron core generate copper loss and iron loss. These losses are converted into heat energy, causing the temperature of the transformer's iron core and windings to rise. If the temperature exceeds the allowable value for a long time, the insulation will gradually lose its mechanical elasticity and age.The temperature of each part of the transformer during operation is different: the winding temperature is the highest, fol
Rockwell
09/12/2025
How to Implement Condition-Based Maintenance for Power Transformers? A Complete 4-Step Process Analysis
1. Definition of Condition-Based MaintenanceCondition-based maintenance refers to a maintenance method where decisions on whether and how to perform maintenance are determined based on the real-time operating status and health condition of equipment. It has no fixed maintenance methods or schedules. The prerequisite for condition-based maintenance is the establishment of equipment parameters and the comprehensive analysis of various operational information of the equipment, so as to make reasona
Noah
09/12/2025
Can't choose a dry-type transformer? Get expert advice – free.
Traction Rectifier TransformersRated capacity: 800 to 4400 kVA; Voltage class: 10 kV and 35 kV; Rectifier pulse number: 12-pulse and 24-pulse. Compared with 12-pulse rectifier circuits, 24-pulse rectifier circuits can reduce the harmonic pollution of the power grid by 50%, and no filtering equipment is needed at this location. It is suitable for power supply systems of urban subways and rail transit.Excitation Rectifier TransformersRated capacity: 315 to 3000 × 3 kVA; Voltage class: 10 kV, 13.8
Vziman
09/12/2025
SG10 Series Transformer Overload Protection Solution | Prevent Overheating and Damage, View Now
Operating Conditions in National Standard GB 6450-1986Ambient temperature: Maximum ambient temperature: +40°C Daily average maximum temperature: +30°C Annual average maximum temperature: +20°C Minimum temperature: -30°C (outdoor); -5°C (indoor) Horizontal axis: Product load; Vertical axis: Average coil temperature rise in Kelvin (note: not in Celsius).For Class H insulation products, the long-term temperature resistance of insulation materials is stipulated by the state as 180°C. However, the in
Rockwell
09/12/2025
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.