The grounding resistance of the box transformer is usually required to be ≤ 4Ω. Do you know why?

Edwiin
07/23/2025

As a key power distribution equipment, the safe operation of a compact substation relies on reliable grounding measures. People often wonder: Why is the grounding resistance of a compact substation generally required to be no more than 4Ω? Behind this value, there are rigorous technical bases and application scenario restrictions. In fact, the requirement of ≤4Ω is not mandatory in all cases. It mainly applies to scenarios where the high - voltage system adopts "ungrounded", "resonant grounding", or "high - resistance grounding" methods. Because under these grounding methods, when a single - phase grounding fault occurs on the high - voltage side, the fault current is relatively small (usually no more than 10A). If the grounding resistance is controlled within 4Ω, the fault voltage can be limited to a relatively safe range (such as 40V), effectively avoiding the electric shock risk caused by the potential rise of the PE wire on the low - voltage side. The following text will deeply analyze the principles and logic behind this technical requirement.

Why is the grounding resistance of a compact substation usually required to be no greater than 4 Ω? Actually, the requirement that the grounding resistance should be ≤ 4 Ω has applicable conditions and does not apply to all situations. This standard mainly applies to scenarios where the high-voltage system adopts ungrounded, resonant grounding, or high-resistance grounding methods, rather than to situations where the high-voltage system uses effective grounding.

In the above three grounding methods (ungrounded, resonant grounding, and high-resistance grounding), the single-phase ground fault current of the high-voltage system is relatively small, usually not exceeding 10 A. When such a fault current flows through the grounding resistance Rb of the compact substation, a voltage drop will be generated across it. If Rb is 4 Ω, the voltage drop is:U=I×R=10A×4Ω=40V
Since the protective grounding of the high-voltage system and the system grounding of the low-voltage distribution system often share the same grounding electrode, the potential of the PE wire on the low-voltage side to the ground will also rise to 40 V. This voltage is lower than the safety limit for human electric shock (the contact voltage limit is generally considered to be 50 V), thus greatly reducing the risk of personal electric shock accidents on the low-voltage side when a ground fault occurs on the high-voltage side.

According to the relevant standards (such as "Code for Grounding Design of AC Electrical Installations" GB/T 50065-2014), Article 6.1.1 stipulates: 
For high-voltage power distribution equipment that operates in non-grounded, resonant-grounded and high-resistance-grounded systems and supplies power to low-voltage electrical devices of 1kV and below, the grounding resistance of the protective grounding should meet the following requirements and should not exceed 4Ω: R ≤ 50 / I

  • R: Consider the maximum grounding resistance after considering seasonal variations (Ω); 
  • I: The single-phase grounding fault current for calculation. In a resonant grounding system, the residual current at the fault point is used as the basis for the translation.

In summary, limiting the grounding resistance of a compact substation to within 4Ω is intended to effectively control the contact voltage within a safe range and ensure personal safety when a ground fault occurs on the high-voltage side. This requirement is the result of safety design based on specific grounding systems and fault current levels.

Edwiin

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
For users, when purchasing a 35kV new energy transformer, choosing between dry-type, mineral oil-filled, or vegetable oil-filled types involves multiple considerations. These include user habits, maintenance-free performance, safety and fire resistance, volume and weight, among others. However, cost differences are undoubtedly one of the most crucial factors.To illustrate the issue intuitively, this paper selects a three-level energy efficiency dual-winding new energy transformer with a rated ca
Ron
07/26/2025
What is the connection group of a transformer?
What is the connection group of a transformer?
Transformer Connection GroupThe connection group of a transformer refers to the phase difference between the primary and secondary voltages or currents. It is determined by the winding directions of the primary and secondary coils, the labeling of their start and end terminals, and the connection mode. Expressed in a clock-like format, there are 12 groups in total, numbered from 0 to 11.The DC method is commonly used to measure the transformer's connection group, mainly to verify whether the con
Vziman
07/26/2025
What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is the sequence for powering down the transformer?
What is the sequence for powering down the transformer?
The sequence for shutting down a main transformer is as follows: when de-energizing, the load side should be shut down first, followed by the power supply side. For energizing operations, the reverse order applies: the power supply side is energized first, then the load side. This is because: Energizing from the power supply side to the load side makes it easier to identify the fault range and take prompt judgment and handling measures in case of a fault, preventing the fault from spreading or e
Rockwell
07/26/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!