• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Introduction of transformer dimensions based on IEC 60076

Edwiin
Field: Power switch
China

Relationship Between Rated Capacity and Dimensions

Definition of Rated Capacity: According to IEC 60076-1, the rated capacity is the maximum apparent power (kVA or MVA) allowed under continuous load, ensuring compliance with steady-state temperature rise and voltage regulation requirements.

Key Parameters Affecting Dimensions:

  • No-load loss (P0) and load loss (Pk)directly influence the physical size of the core and windings.

  • Short-circuit impedance (%) correlates with winding turns and insulation distances; higher impedance designs may require larger dimensions.

Winding Connection Types and Structural Design

  • Y-Type Winding: Suitable for high-voltage sides, cost-effective, and supports neutral grounding. Commonly used in Dyn11 configurations to reduce zero-sequence impedance.

  • D-Type Winding: Ideal for low-voltage, high-current scenarios. Combined with Y-type windings, it optimizes zero-sequence current paths (e.g., Yd11 or Dyn11 for 10/0.4kV distribution transformers).

Cooling Methods and Physical Dimensions

Cooling Types:

  • AN (Natural Cooling): Relies on radiators for heat dissipation, compact but limited in capacity.

  • AF (Forced Air Cooling): Requires fans, increases volume but supports higher capacities.

Example Dimensions (from technical specifications):

Insulation Levels and Dimensional Impact

  • Insulation Classes:F-class or H-class insulation materials allow more compact designs due to higher temperature tolerance.

  • Insulation Test Requirements:Impulse withstand voltages (e.g., LI75 AC35 for low-voltage side and LI170 AC70 for high-voltage side) affect winding spacing and insulation thickness.

Tap Range and Structural Complexity

Tap Changers: A ±2×2.5% tap range requires built-in voltage regulation windings, potentially increasing axial dimensions.

Summary

Transformer dimensions are determined by rated capacity, losses, cooling methods, and insulation requirements. Practical designs should follow IEC 60076-1 general rules and IEC 60076-8 load guidelines, combined with standardized parameter tables (e.g., ). Avoid oversimplified models like "optimal load rate," as emphasized in IEC standards.

Give a tip and encourage the author!

Recommended

Main Transformer Accidents and Light Gas Operation Issues
1. Accident Record (March 19, 2019)At 16:13 on March 19, 2019, the monitoring background reported a light gas action of No. 3 main transformer. In accordance with the Code for Operation of Power Transformers (DL/T572-2010), operation and maintenance (O&M) personnel inspected the on-site condition of No. 3 main transformer.On-site confirmation: The WBH non-electrical protection panel of No. 3 main transformer reported a Phase B light gas action of the transformer body, and the reset was ineff
02/05/2026
Why Must a Transformer Core Be Grounded at Only One Point? Isn't Multi-Point Grounding More Reliable?
Why Does the Transformer Core Need to Be Grounded?During operation, the transformer core, along with the metal structures, parts, and components that fix the core and windings, are all situated in a strong electric field. Under the influence of this electric field, they acquire a relatively high potential with respect to ground. If the core is not grounded, a potential difference will exist between the core and the grounded clamping structures and tank, which may lead to intermittent discharge.I
01/29/2026
What’s the Difference Between Rectifier Transformers and Power Transformers?
What is a Rectifier Transformer?"Power conversion" is a general term encompassing rectification, inversion, and frequency conversion, with rectification being the most widely used among them. Rectifier equipment converts input AC power into DC output through rectification and filtering. A rectifier transformer serves as the power supply transformer for such rectifier equipment. In industrial applications, most DC power supplies are obtained by combining a rectifier transformer with rectifier equ
01/29/2026
How to Judge, Detect and Troubleshoot Transformer Core Faults
1. Hazards, Causes, and Types of Multi-Point Grounding Faults in Transformer Cores1.1 Hazards of Multi-Point Grounding Faults in the CoreUnder normal operation, a transformer core must be grounded at only one point. During operation, alternating magnetic fields surround the windings. Due to electromagnetic induction, parasitic capacitances exist between the high-voltage and low-voltage windings, between the low-voltage winding and the core, and between the core and the tank. The energized windin
01/27/2026
Related Products
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.