• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Difference Between Soft Starter & VFD (Variable Frequency Drive)

Edwiin
Field: Power switch
China

Variable frequency drives (VFDs) and soft starters are distinct types of motor starting devices, though their use of semiconductor components often causes confusion. While both enable safe starting and stopping of induction motors, they differ significantly in operational principles, functionality, and application advantages.

VFDs regulate both voltage and frequency to control motor speed dynamically, suitable for variable-load scenarios. Soft starters, however, use voltage ramping to limit inrush current during startup without adjusting speed post-activation. This fundamental difference defines their roles: VFDs excel in speed-sensitive, energy-efficient applications, while soft starters offer cost-effective, simplified starting for fixed-speed motors.

Before delving into the differences between VFDs and soft starters, it's essential to define a motor starter.

Motor Starter

A motor starter is a critical device designed to safely initiate and halt the operation of an induction motor. During startup, an induction motor draws a substantial inrush current—approximately 8 times its rated current—due to low winding resistance. This surge can damage internal windings, shorten the motor’s lifespan, or even cause burnout.

Motor starters mitigate this risk by reducing starting current, protecting the motor from mechanical stress (e.g., sudden jerks) and electrical damage. They also facilitate safe shutdowns, and often include built-in protection against low voltage and overcurrent—making them indispensable for reliable motor operation.

Soft Starter

A soft starter is a specialized motor starter that curtails inrush current by reducing the voltage supplied to the motor. It employs semiconductor thyristors for voltage control:

  • Thyristor Configuration: Pairs of back-to-back thyristors manage current flow in both directions.

  • Three-Phase Systems: Require 6 thyristors to simultaneously reduce voltage across all three phases, ensuring balanced starting.

The thyristor features three terminals: anode, cathode, and gate. Current flow is blocked until a voltage pulse is applied to the gate, which triggers the thyristor and allows current to pass through. The amount of current or voltage regulated by the thyristor is controlled by adjusting the firing angle of the gate signal—this mechanism reduces the inrush current supplied to the motor during startup.

When starting the motor, the firing angle is set to deliver low voltage, which gradually increases as the motor accelerates. As the voltage reaches line voltage, the motor attains its rated speed. A bypass contactor is typically employed to supply line voltage directly during normal operation.

During motor shutdown, the process reverses: voltage is gradually reduced to decelerate the motor before cutting off the input supply. Since a soft starter only modifies supply voltage during startup and shutdown, it cannot adjust motor speed during normal operation, limiting its use to constant-speed applications.

Key advantages of soft starters include:

  • No Harmonic Generation: Eliminates the need for additional harmonic filters.

  • Compact Design: Smaller footprint than VFDs due to fewer components, reducing overall cost.

VFD (Variable Frequency Drive)

A variable frequency drive (VFD) is a semiconductor-based motor starter that enables safe motor start/stop functionality while also providing full-speed control during operation. Unlike soft starters, VFDs regulate both supply voltage and frequency. Since the speed of an induction motor is directly tied to supply frequency, VFDs are ideal for applications requiring dynamic speed adjustment.

A VFD consists of three core circuits: a rectifier, a DC filter, and an inverter. The process begins with the rectifier converting AC line voltage to DC, which is then smoothed by the DC filter. The inverter circuit subsequently transforms the steady DC voltage back into AC, with its logic control system enabling precise adjustment of both the output voltage and frequency. This allows the motor speed to ramp smoothly from 0 RPM to its rated speed—and even beyond by increasing the frequency—providing comprehensive control over the motor’s torque-speed characteristics.

By varying the supply frequency, a VFD enables dynamic speed adjustment during operation, making it ideal for applications requiring real-time speed modulation. Examples include fans that adjust speed based on temperature and water pumps that respond to incoming water pressure. Since motor torque is directly proportional to both supply current and voltage, the VFD’s ability to regulate both parameters allows for fine-grained torque control.

In contrast to traditional starters like DOL (direct-on-line) and soft starters— which can only run the motor at full speed or stop it—VFDs optimize power consumption by allowing the motor to operate at programmed speeds. However, this versatility comes with trade-offs: VFDs generate line harmonics, necessitating additional filters, and their complex circuitry (comprising rectifiers, filters, and inverters) results in a larger form factor and higher cost—typically three times that of a soft starter.

Give a tip and encourage the author!

Recommended

Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Neutral point grounding operation mode for 110kV~220kV power grid transformers
The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
01/29/2026
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
01/29/2026
HECI GCB for Generators – Fast SF6 Circuit Breaker
1.Definition and Function1.1 Role of the Generator Circuit BreakerThe Generator Circuit Breaker (GCB) is a controllable disconnect point located between the generator and the step-up transformer, serving as an interface between the generator and the power grid. Its primary functions include isolating generator-side faults and enabling operational control during generator synchronization and grid connection. The operating principle of a GCB is not significantly different from that of a standard c
01/06/2026
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.