How to Find the DC Gain of a Transfer Function (Examples Included)

Electrical4u
03/28/2024

What Is A Transfer Function

What is a Transfer Function?

A transfer function describes the relationship between the output signal of a control system and the input signal. A block diagram is a visualization of the control system that uses blocks to represent the transfer function and arrows representing the different input and output signals.

Transfer Function
Transfer Function

The transfer function is a convenient representation of a linear time-invariant dynamical system. Mathematically the transfer function is a function of complex variables

For any control system, there is a reference input known as excitation or cause that operates through a transfer function to produce an effect resulting in a controlled output or response.

Thus, the cause and effect relationship between output and input is linked to each other through a transfer function. In a Laplace Transform, if the input is represented by R(s) and the output is represented by C(s).

The control system transfer function is defined as the Laplace transform ratio of the output variable to the Laplace transform of the input variable, assuming that all initial conditions are zero.


  \begin{align*} G(s)=\frac{C(s)}{R(s)}\end{align*}


What is DC Gain?

The transfer function has many useful physical interpretations. The steady-state gain of a system is simply the ratio of the output and the input in steady-state represented by a real number between negative infinity and positive infinity.

When a stable control system is stimulated with a step input, the response at a steady-state reaches a constant level.

The term DC gain is described as the ratio of amplitude between the response of the steady-state and the step input.

DC gain
DC gain

DC gain is the ratio of the magnitude of the response to the steady-state step to the magnitude of the step input. The final value theorem demonstrates that DC gain is the value of the transfer function assessed at 0 for stable transfer functions.

Time Response of First Order Systems

The order of a dynamic system is the order of the highest derivative of its governing differential equation. First-order systems are the simplest dynamic systems to analyze.

To understand the concept of steady-state gain or DC gain, consider a general first-order transfer function.


  \begin{align*}G(s)=\frac{G(s)}{R(s)} = \frac{b_{0}}{s+ a_{0}}\end{align*}


G(s) can also be written as

\begin{align*}\frac{K}{\tau s+1} = \frac{b_{0}}{s+a_{0}}\end{align*}


Here,


  \begin{align*} a {0}=\frac{1}{\tau} \; \; \; \; b {0}=\frac{K}{\tau} \end{align*}

\tau is called the time constant. K is called the DC gain or steady-state gain

How to Find the DC Gain of a Transfer Function

DC gain is the ratio of the steady-state output of a system to its constant input, i.e., steady-state of the unit step response.

To find the DC gain of a transfer function, let us consider both continuous and discrete Linear Transform Inverse (LTI) systems.

Continuous LTI system is given as


(1) \begin{equation*} G(s)=\frac{Y(s)}{U(s)}\end{equation*}

Discrete LTI system is given as

\begin{equation*} G(z)=\frac{Y(z)}{U(z)}\end{equation*}


Use final value theorem to compute the steady-state of the unit step response.


(3) \begin{equation*} L\left ( y_{step(t)} \right )=G(s)\frac{1}{s}\end{equation*}



(4) \begin{equation*}DC\; \; Gain = \lim_{t\rightarrow \infty }y_{step(t)}\end{equation*}



(5) \begin{equation*} DC\; \; Gain = \lim_{s\rightarrow 0 }s\left [ G(s)\frac{1}{s} \right ]\end{equation*}


G(s) is stable and all poles lie on the left hand side

Hence,


(6) \begin{equation*}DC\; \; Gain = \lim_{s\rightarrow 0 }s\left [ G(s)\right ]\end{equation*}

The formula of the final value theorem used for a continuous LTI system is


(7) \begin{equation*}\frac{y(\infty)}{u(\infty)} = G(s)_{s=0}=G(0)\end{equation*}


The formula of the final value theorem used for a discrete LTI system is


(8) \begin{equation*}\frac{y(\infty)}{u(\infty)} = G(z)_{z=1}=G(1)\end{equation*}


In both cases, if the system has an integration the result will be \infty.

The DC gain is the ratio between the steady-state input and the steady-state derivative of the output can be obtained via differentiation of the obtained output. It is nearly same for both continuous and discrete system.

Differentiation in the Continuous Domain

In the continuous system or ‘s’ domain, the equation (1) is differentiated by multiplying the equation by ‘s’.


(9) \begin{equation*}\frac{\dot{Y(s)}}{U(s)}= sG(s)\end{equation*}


where \dot{Y(s)} is the Laplace transform of \dot{y(t)}

Differentiation in the Discrete Domain

Th derivative in the discrete domain can be obtained by a first difference.


(10) \begin{equation*}\dot{y(k)}=\frac{y_{k}-y_{k-1}}{T}\end{equation*}



(11) \begin{equation*}\dot{Y(z)}=\frac{Y(z)-z^{-1}Y(z)}{T}\end{equation*}



(12) \begin{equation*}\dot{Y(z)}=Y(z)\left [\frac{ ^{1-z^{-1}}}{T} \right ]\end{equation*}



(13) \begin{equation*}\dot{Y(z)}=Y(z)\left [\frac{z-1}{T_{z}} \right ]\end{equation*}


Thus to differentiate in the discrete domain, we need to multiply \frac{z-1}{T_{z}}

Numerical Examples To Find DC Gain

Example 1

Consider the continuous transfer function,


  \begin{align*} H(s) =\frac{Y(s)}{U(s)} = \frac{12}{(s+2)(s+10)}\end{align*}


To find the DC gain (steady-state gain) of the above transfer function, apply the final value theorem


  \begin{align*}\lim_{t\rightarrow \infty}y(t)= \lim_{s\rightarrow 0}s\times \frac{12}{(s+2)(s+10)}\end{align*}



  \begin{align*}\lim_{t\rightarrow \infty}y(t)= \lim_{s\rightarrow 0}s\times \frac{12}{2\times 3}=2\end{align*}


Now the DC gain is defined as the ratio of steady state value to the applied unit step input.

DC Gain = \frac{2}{1}=2

Hence it is important to note that the concept of DC Gain is applicable only to those systems which are stable in nature.

Example 2

Determine the DC gain for the equation


  \begin{align*}G(s)=\frac{K}{\tau s+1}\end{align*}


The step response of the above transfer equation is


  \begin{align*}y_{step}(t)=L^{-1}\left [\frac{K}{(\tau s+1)s} \right ]\end{align*}



  \begin{align*}y_{step}(t)=L^{-1}\left [ K\left ( \frac{1}{s}-\frac{\tau }{\tau s+1} \right ) \right ]\end{align*}


Now, apply the final value theorem to find the DC gain.


  \begin{align*}y_{ss}=\lim_{t\rightarrow \infty }y_{step}(t)= \lim_{s\rightarrow 0}\frac{K}{(\tau s+1)s}s = K\end{align*}

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!