• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Initial Value Theorem of Laplace Transform

Electrical4u
Field: Basic Electrical
0
China

Laplace Transform Initial Value Theorem

Initial Value Theorem is one of the basic properties of Laplace transform. It was given by prominent French Mathematical Physicist Pierre Simon Marquis De Laplace. He made crucial contributions in the area of planetary motion by applying Newton’s theory of Gravitation. His work regarding the theory of probability and statistics is considered pioneering and this influenced a whole new generation of Mathematician. Laplace is one among the 72 people to have their name engraved on the Eiffel Tower.
Initial value theorem and Final value theorem are together called as Limiting Theorems. Initial value theorem is often referred as IVT. It will enable us to find the initial value at time t = (0+) for a given transformed function (laplace) without enabling us work harder to find f(t) which is a tedious process in such case.

Conditions for the existence of Initial value theorem


  1. The function f(t) and its derivative f(t) should be Laplace transformable.

  2. If time t approaches to (0+) then the function f(t) should exists.

  1. The function f(t) = 0 for t > 0 and contains no impulses or higher order singularities at origin.

Statement of Laplace Initial Value Theorem

If f(t) and F(s) is Laplace transform pairs. i.e

then Initial value theorem is given by

Laplace transform of a function f(t) is

then Laplace transform of its derivative f ‘ (t) is

Consider the integral part first

Substituting (2) in (1) we get

Upon cancelling f (0) on both sides we get

We can straightaway write the above equation but my intension on taking the limits of integration from (0 to ∞) is that however we consider the negative values of limits it pertains to the results having positive values.

Note:
We also knew that Laplace transform is applicable only for causal functions.
On considering (s) tends to infinity on both sides in (3)

Hence, Initial value theorem is proved.

Applications of Initial Value Theorem

As I said earlier the purpose of initial value theorem is to determine the initial value of the function f (t) provided its Laplace transform is given
Example 1 :
Find the initial value for the function f (t) = 2 u (t) + 3 cost u (t)
Sol:

By initial value theorem

The initial value is given by 5.
Example 2:
Find initial value of the transformed function

Sol:

By initial value theorem

[as s → ∞ the values of s become more and more insignificant hence the result is obtained by simply taking the ratio of leading co-efficient]

Example 3:
Find the initial value of

Solution:
Initial value theorem is not applicable in this case. We can prove it in two ways.
Let’s see how it goes
Method 1:

Note:
This theorem is applicable strictly if F (s) is proper fraction i.e the numerator polynomial is of lower order than the denominator polynomial.
In case if IVT is applied we get ∞ as the initial value.

[this is not possible in practical circuits ]
Aliter:


Applying Inverse Laplace transform

It is obvious that Initial value theorem is not applicable since there is impulse function, which is constant over time t.


By this discussion, it is easy for one to manipulate the initial conditions of the circuit with the Laplace transformed function.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.


Give a tip and encourage the author!

Recommended

Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Neutral point grounding operation mode for 110kV~220kV power grid transformers
The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
01/29/2026
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
01/29/2026
HECI GCB for Generators – Fast SF6 Circuit Breaker
1.Definition and Function1.1 Role of the Generator Circuit BreakerThe Generator Circuit Breaker (GCB) is a controllable disconnect point located between the generator and the step-up transformer, serving as an interface between the generator and the power grid. Its primary functions include isolating generator-side faults and enabling operational control during generator synchronization and grid connection. The operating principle of a GCB is not significantly different from that of a standard c
01/06/2026
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.