Final Value Theorem in Laplace Transform (Proof & Examples)

Electrical4u
03/29/2024

Final Value Theorem In Laplace Transform

In the solution of Networks, Transient, and Systems sometimes we may not be interested in finding out the entire function of time f(t) from it’s Laplace Transform F(s), which is available for the solution. It is very interesting to find that we can find the first value or last value of f(t) or it’s derivatives without having to find out the entire function f(t). We will be interested in finding out final values and it’s derivatives in this article.

For the sake of example:
If F(s) is given, we would like to know what is F(∞), Without knowing the function f(t), which is Inverse Laplace Transformation, at time t→ ∞. This can be done by using the property of Laplace Transform known as Final Value Theorem. Final value theorem and initial value theorem are together called the Limiting Theorems.

Definition of Final Value Theorem of Laplace Transform

If f(t) and f'(t) both are Laplace Transformable and sF(s) has no pole in jw axis and in the R.H.P. (Right half Plane) then,

Proof of Final Value Theorem of Laplace Transform
We know differentiation property of Laplace Transformation:

Note
Here the limit 0 is taken to take care of the impulses present at t = 0
Now we take limit as s → 0. Then e-st → 1 and the whole equation looks like


Examples of Final Value Theorem of Laplace Transform
Find the final values of the given F(s) without calculating explicitly f(t)

Answer


Answer

Note
See here Inverse Laplace Transform is difficult in this case. Still we can find the Final Value through the Theorem.

Answer
Note
In Example 1 and 2 we have checked the conditions too but it satisfies them all. So we refrain ourselves of showing explicitly. But here the sF(s) has a pole on the R.H.P as the denominator have a positive root.
So, here we can’t apply Final Value Theorem.

Answer
Note
In this example sF(s) has poles on jw axis. +2i and -2i specifically.
So, here we can’t apply Final Value Theorem as well.

Answer
Note


Points to remember:

  • For applying FVT we need to ensure that f(t) and f'(t) are transformable.

  • We need to ensure that the Final Value exists. Final value doesn’t exist in the following cases

If sF(s) has poles on the right side of s plane. [Example 3]
If sF(s) has conjugate poles on jw axis. [Example 4]
If sF(s) has pole on origin. [Example 5]

  • Then apply

In this example sF(s) has pole on the origin.
So here we can’t apply Final Value Theorem as well.
Final Trick
Just check that sF(s) is unbounded or not. If unbounded, then it is not fit for Final Value Theorem and the final value is simply infinite.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!