Analysis of Exponential Fourier Series

Electrical4u
03/29/2024

Exponential Fourier Series Analysis

Fourier Series at a Glance

A continuous time signal x(t) is said to be periodic if there is a positive non-zero value of T for which

As we know any periodic signal can be classified into harmonically related sinusoids or complex exponential, provided it satisfies the Dirichlet’s Conditions. This decomposed representation is called FOURIER SERIES.
Two type of
Fourier Series representation are there. Both are equivalent to each other.

  • Exponential Fourier Series

  • Trigonometric Fourier Series

Both representations give the same result. Depending upon the type of signal, we choose any of the representation according to our convenience.

A periodic signal is analyzed in terms of Exponential Fourier Series in the following three stages:

  1. Representation of Periodic Signal.

  2. Amplitude and Phase Spectra of a Periodic Signal.

  3. Power Content of a Periodic Signal.

Representation of Periodic Signal

A periodic signal in Fourier Series may be represented in two different time domains:

  1. Continuous Time Domain.

  2. Discrete Time Domain.

Continuous Time Domain

The complex Exponential Fourier Series representation of a periodic signal x(t) with fundamental period To is given by

Where, C is known as the Complex Fourier Coefficient and is given by,

Where ∫0T0, denotes the integral over any one period and, 0 to T0 or –T0/2 to T0/2 are the limits commonly used for the integration.
The equation (3) can be derived be multiplying both sides of equation (2) by e(-jlω0t) and integrate over a time period both sides.

On interchanging the order of summation and integration on R.H.S., we get



When, k≠l, the right hand side of (5) evaluated at the lower and upper limit yields zero. On the other hand, if k=l, we have

Consequently equation (4) reduces to



which indicates average value of x(t) over a period.
When x (t) is real,

Where, * indicates conjugate

Discrete Time Domain

Fourier representation in discrete is very much similar to Fourier representation of periodic signal of continuous time domain.
The discrete Fourier series representation of a periodic sequence x[n] with fundamental period No is given by
Where, Ck, are the Fourier coefficients and are given by

This can be derived in the same way as we derived it in continuous time domain.

Amplitude and Phase Spectra of a Periodic Signal

We can express Complex Fourier Coefficient, Ck as

A plot of |Ck| versus the angular frequency w is called the amplitude spectrum of the periodic signal x(t), and a plot of Фk, versus w is called the phase spectrum of x(t). Since the index k assumes only integers, the amplitude and phase spectra are not continuous curves but appear only at the discrete frequencies kω0, they are therefore referred to as discrete frequency spectra or line spectra.
For a real periodic signal x (t) we have C-k = Ck*. Thus,

Hence, the amplitude spectrum is an even function of ω, and the phase spectrum is an odd function of 0 for a real periodic signal.

Power Content of a Periodic Signal

Average Power Content of a Periodic Signal is given by

If x (t) is represented by the complex exponential Fourier Series, then

This equation is known as Parseval’s identity or Parseval’s Theorem.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!