Temperature Transducers: What Are They? (Types & Examples)

Electrical4u
03/27/2024

What Is A Temperature Transducer

What is a Temperature Transducer?

A Temperature Transducer is a device that converts the thermal quantity into any physical quantity such as mechanical energy, pressure and electrical signals etc. For example, in a thermocouple the electrical potential difference is produced due to temperature difference across its terminals. So, thermocouple is an temperature transducer.

Main Features of Temperature Transducers

  • The input to them are always the thermal quantities

  • They generally converts the thermal quantity into electrical quantity

  • They are usually used for the measurement of the temperature and heat flow

Basic Scheme of Temperature Transducers

The basic scheme of temperature transducers is given below in following steps
Sensing Element.

The sensing element in the temperature transducers is the element whose properties change with change in temperature. As the temperature changes the corresponding change occurs in certain property of the element.

Example – In a Resistance Temperture Detector (RTD) the sensing element is the Platinum metal.

Desirable Conditions for Choosing the Sensing Element are as

  • Change per unit resistance of material per unit change in temperature should be large

  • The material should have a high resistivity so that minimum volume of material is used for its construction

  • The material should have continuous and stable relationship with temperature

  • Transduction Element
    It is the element that transforms the output of the sensing element into electrical quantity. The change in the property of the of sensing element acts as the output for it. It measures the change in the property of sensing element. The output is of transduction element is then calibrated to give output which represents the change in the thermal quantity.

Example- In the thermocouple the potential difference produced across the two terminal is being measured by voltmeter and magnitude of voltage produced after calibration gives idea of change in temperature.

Types of Temperature Transducers

Contact Temperature Sensor Types

In these the sensing element is in direct contact with the thermal source. They use the conduction for transfer of thermal energy.

Non-contact Temperature Sensor Types

In a non-contact temperature sensor, the element is not in direct contact with the thermal source (analogous to a non contact voltage tester or voltage pen). Non-contact temperature sensors use principle of convection for heat flow. Various temperature transducers that are generally used are described below:

Thermistor

The word thermistor can be termed as Thermal Resistor. So as the name indicates it is a device whose resistance changes with the change of the temperature. Due to there high sensitivity they are widely used for the measurements of the temperature.They are usually called the ideal temperature transducer. Thermistors are generally composed of mixture of metallic oxides.
thermistor

Properties of Thermistors

  • They have Negative Thermal Coefficient i.e. resistance of the thermistor decreases with increase in temperature

  • They are made up of the semiconductor materials

  • They are made sensitive than RTD (Resistance Thermometres) and Thermocouples

  • There resistance lies between 0.5Ω to 0.75 MΩ

  • They are generally used in applications where measurement range of temperature -60oC to 15oC.

Resistance Thermometers

Another type of temperature transducer is the Resistance Temperature Detector or RTD. RTD’s are precision temperature sensors made from high-purity conducting metals such as platinum, copper or nickel wound into a coil and whose electrical resistance changes as change of temperature, similar to that of the thermistor.
rtd
There resistance changes with following relation as,

R = Resistance of element at given temperature
α = Thermal coefficient of element
Ro = Resistance of element at 0oC

Main Features of RTD’s

  • They are highly sensitive and very cheap as compared to thermistors and thermocouples

  • They can measure the temperature from -182.96oC to 630.74oC

Thermocouples

Thermocouples are temperature transducers that are basically consists of two junctions of dissimilar metals, such as copper and constantan that are welded. One junction is kept at a constant temperature called the reference (Cold) junction, while the other the measuring (Hot) junction. When the two junctions are at different temperatures, a voltage is developed across the junction which is used to measure the temperature.

Principle of Thermocouple

thermocouple
When the junctions of two metals such as copper and constantan are connected together the potential difference is produced is produced between them. The phenomenon is called the Seebeck effect as a temperature gradient is generated along the conducting wires producing an emf. Then the output voltage from a thermocouple is a function of the temperature changes.

Main Features of Thermocouples

  • Extreme temperatures of range between -200oC to over +2000oC can be measured with thermocouples which is an advantage over both RTD and Thermistor

  • They are the Active Transducers so they don’t require any external source for measuring of temperature as like RTD’s and Thermistors.

  • They are the cheaper than both RTD’s and Thermistors.

  • These have small accuracy as compared to RTD’s and Thermistors so generally they are not used for high precision work.

Integrated Circuit Temperature Transducers

These are the temperature transducers which use the temperature sensing element with monolithic electronic circuits as a combination for the measurement of temperature.
They have following type

  • LM 335 – it provides an output of 10 mV/oK

  • LM 34 – it provides an output of 10 mV/oF

  • AD 592 – it provides a current output of 1µA/oK

Description of LM 335 Series

A LM335 is an temperature sensitive zener diode, which reverse biased into its breakdown region when sensor senses any temperature changes and gives output as,

θ = Temperature in oC

Main Features of Integrated Temperature Transducers

  • They are linear temperature transducers

  • They are very cheap

  • They have operating range is small between 0 – 200oC which is the main disadvantage of them.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!