• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Schering Bridge Measurement of Capacitance using Schering Bridge

Electrical4u
Field: Basic Electrical
0
China

What Is The Measurement Of Capacitance Using Schering Bridge

Schering Bridge Theory

This bridge is used to measure to the capacitance of the capacitor, dissipation factor and measurement of relative permittivity. Let us consider the circuit of Schering bridge as shown below:
Schering BridgeHere, c1 is the unknown capacitance whose value is to be determined with series electrical resistance r1.

c2 is a standard capacitor.
c4 is a variable capacitor.
r3 is a pure
resistor (i.e. non inductive in nature).
And r4 is a variable non inductive resistor connected in parallel with variable
capacitor c4. Now the supply is given to the bridge between the points a and c. The detector is connected between b and d. From the theory of ac bridges we have at balance condition,


Substituting the values of z1, z2, z3 and z4 in the above equation, we get

Equating the real and imaginary parts and the separating we get,

schering bridge

Let us consider the phasor diagram of the above Shering bridge circuit and mark the voltage drops across ab,bc,cd and ad as e1, e3,e4 and e2 respectively. From the above Schering bridge phasor diagram, we can calculate the value of tanδ which is also called the dissipation factor.

The equation that we have derived above is quite simple and the dissipation factor can be calculated easily. Now we are going to discuss high voltage Schering Bridge in detail. As we have discussed that simple schering bridge (which uses low voltages) is used for measuring dissipation factor, capacitance and measurement of other properties of insulating materials like insulating oil etc. What is the need of high voltage schering bridge? The answer to this question is very simple, for the measurement of small capacitance we need to apply high voltage and high frequency as compare to low voltage which suffers many disadvantages. Let us discuss more features of this high voltage Schering Bridge:
schering bridge

  1. The bridge arms ab and ad consists of only capacitors as shown the bridge given below and impedances of these two arms are quite large as compared to the impedances of bc and cd. The arms bc and cd contains resistor r3 and parallel combination of capacitor c4 and resistor r4 respectively. As impedances of bc and cd are quite small therefore drop across bc and cd is small. The point c is earthed, so that the voltage across bc and dc are few volts above the point c.

  2. The high voltage supply is obtained from a transformer 50 Hz and the detector in this bridge is a vibration galvanometer.

  3. The impedances of arms ab and ad very are large therefore this circuit draws low current hence power loss is low but due to this low current we need a very sensitive detector to detect this low current.

  4. The fixed standard capacitor c2 has compressed gas which works as dielectric therefore dissipation factor can be taken as zero for compressed air. Earthed screens are placed between high and low arms of the bridge to prevent errors caused due to inter capacitance.

Let us study how Schering bridge measures relative permittivity: In order measure the relative permittivity, we need to first measure capacitance of a small capacitor with specimen as dielectric. And from this measured value of capacitance relative permittivity can calculated easily by using the very simple relation:

Where, r is relative permeability.
c is the capacitance with specimen as dielectric.
d is the spacing between the electrodes.
A is the net area of electrodes.
and ε is permittivity of free space.
There is another way to calculate relative permittivity of the specimen by changing electrode spacing. Let us consider diagram shown below
schering bridge
Here A is the area of electrode.
d is the thickness of the specimen.
t is the gap between the electrode and specimen (here this gap is filled by compressed gas or air).
cs is the capacitance of specimen.
co is capacitance due to spacing between electrode and specimen.
c is the effective combination of cs and co.

From figure above, as two capacitors are connected in series,

εo is permittivity of free space, εr is relative permittivity, when we remove specimen and the spacing readjusted to have same value of capacitance, the expression for capacitance reduces to

On equating (1) and (2), we will get the final expression for of εr as:

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!

Recommended

Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Neutral point grounding operation mode for 110kV~220kV power grid transformers
The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
01/29/2026
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
01/29/2026
HECI GCB for Generators – Fast SF6 Circuit Breaker
1.Definition and Function1.1 Role of the Generator Circuit BreakerThe Generator Circuit Breaker (GCB) is a controllable disconnect point located between the generator and the step-up transformer, serving as an interface between the generator and the power grid. Its primary functions include isolating generator-side faults and enabling operational control during generator synchronization and grid connection. The operating principle of a GCB is not significantly different from that of a standard c
01/06/2026
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.