• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Electrostatic Precipitator: What is it And How Does it Work?

Electrical4u
Field: Basic Electrical
0
China

WechatIMG1872.jpeg

The flue gases produced due to the combustion of solid pulverized fuel in the furnace contain plenty of dust particles.

When a chimney releases these flue gases in the atmosphere without filtering these dust particles, the atmosphere may get polluted.

Hence, these dust particles need to be removed from the flue gases as much as possible before these flue gases get discharged into the atmosphere. By removing the dust particles from flue gases, we can control air pollution.

An electrostatic precipitator does this work for a furnace system. We install this device in the way of flue gases from the furnace to the chimney so that the device can filter the flue gases before they enter the chimney.

Working Principle of Electrostatic Precipitator

The working principle of the electrostatic precipitator is quite simple. It has two sets of electrodes one is positive, and another is negative.

The negative electrodes are in the form of a rod or wire mesh. Positive electrodes are in the form of plates.

The positive plates and negative electrodes are placed vertically in the electrostatic precipitator alternatively one after another.positive and negative electrodes in the electrostatic precipitator
The negative electrodes are connected to a negative terminal of a high voltage DC source, and positive plates are connected to the positive terminal of the DC source.

The positive terminal of the DC source may be grounded to get stronger negativity in the negative electrodes.

The distance between each negative electrode and positive plate and the DC voltage applied across them are so adjusted that the voltage gradient between each negative electrode and adjacent positive plate becomes quite high to ionize the medium between these.
Working Principle of Electrostatic Precipitator

The medium between the electrodes is air, and due to the high negativity of negative electrodes, there may be a corona discharge surround the negative electrode rods or wire mesh.

The air molecules in the field between the electrodes become ionized, and hence there will be plenty of free electrons and ions in the space. The entire system is enclosed by a metallic container on which one side is provided with an inlet of the flue gases, and the opposite side is provided with the outlet of the filtered gases.

As soon as the flue gases enter into the electrostatic precipitator, dust particles in the gases collide with the free electrons available in the medium between the electrodes and the free electrons will be attached to the dust particles.

As a result, the dust particles become negatively charged. Then these negatively charged particles will be attracted due to the electrostatic force of the positive plates.

Consequently, the charged dust particles move towards the positive plates and deposit on positive plates.

Here, the extra electron from the dust particles will be removed on positive plates, and the particles then fall due to gravitational force. We call the positive plates collecting plates.

The flue gases after traveling through the electrostatic precipitator become almost free from ash particles and ultimately get discharged to the atmosphere through the chimney.

An electrostatic precipitator does not contribute directly to the production of electricity in the thermal power plant, but it helps to keep the atmosphere clean which is quite important for living beings.

Hoppers are fitted below the electrostatic precipitator chamber for collecting dust particles. Water pray may be used on the top to accelerate the removal of the dust from the collecting plates.
Electrostatic Precipitator
Precipitator

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!

Recommended

Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Neutral point grounding operation mode for 110kV~220kV power grid transformers
The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
01/29/2026
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
01/29/2026
HECI GCB for Generators – Fast SF6 Circuit Breaker
1.Definition and Function1.1 Role of the Generator Circuit BreakerThe Generator Circuit Breaker (GCB) is a controllable disconnect point located between the generator and the step-up transformer, serving as an interface between the generator and the power grid. Its primary functions include isolating generator-side faults and enabling operational control during generator synchronization and grid connection. The operating principle of a GCB is not significantly different from that of a standard c
01/06/2026
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.