Carnot Cycle and Reversed Carnot Cycle

Electrical4u
03/21/2024

What Are Carnot Cycle And Reversed Carnot Cycle

Carnot Cycle

The Carnot cycle is a thermodynamic cycle that is known for the best possible efficiency. Carnot cycle changes the energy available in the form of heat to produce useful reversible-adiabatic (isotropic) and other processes.

Carnot engine efficiency is one minus the ratio of the temperature of the hot thermal reservoir to the temperature of the cold reservoir. The Carnot cycle is known for setting the highest efficiency benchmark that any cycle or engine can achieve.

Work is done by the working fluid during the first part of the cycle and work is done on the working fluid during the second part of the cycle. The difference between the two is the net work done.

The cycle efficiency can be maximized by utilizing the processes that requires the least amount of work and deliver the most by using the reversible processes. Practically, reversible cycles cannot be achieved due to irreversibility associated with each process which cannot be eliminated.

Refrigerators and heat engines that work on reversible cycles are considered as models for comparing the actual heat engines and refrigerators. In the development of the actual cycle, the reversible cycle serves as a starting point and modified in order to meet the requirement.

The Carnot cycle is composed of four reversible processes (2 nos. reversible- isothermal and 2 nos. reversible-adiabatic processes) are as follows:
carnot cycle

The Carnot Cycle is demonstrated below through the relevant example of the piston:
STEP 1 – 2
(Reversible Isothermal Expansion, Th = Constant)
carnot cycle
TH is the initial temperature of the gas and also the temperature of the reservoir, is in close contact with the cylinder head.

The temperature of the gas drops when the gas expands and the same is kept constant by transferring infinitesimal-heat (dT) from the reservoir to the gas.
The amount of heat transferred during the process to the gas is Qh

STEP 2 – 3
(Reversible adiabatic expansion temperature drop from TH to TL)
carnot cycle
The system becomes adiabatic when the heat reservoir is replaced by insulation. During this process, the gas temperature drops to Tl from Th.

This process is called reversible as well as adiabatic (note that engineering thermodynamics has a specific definition for systems and processes).

STEP 3 – 4
(Reversible Isothermal Compression, Tl = constant)
carnot cycle
At stage-3, the Heat sink replaced the cylinder head insulation at temperature Tl. When an external force pushes the piston inwards for doing the work on gas, then the temperature of the gas increases.

But the temperature of the gas maintained constant by rejecting the heat to the sink. The amount of heat rejected during the process is Ql.
STEP 4 – 1
(Reversible adiabatic compression temperature increases from Tl to Th)
carnot cycle
The energy sink is replaced with insulation and the temperature of the gas increases from Tl to Th during the compression process.

Net Work Done

Work done by the gas during the expansion process is the area given under the curve 1-2-3.
Work-done on the gas during the compression process is the area given under the curve 3-4-1
carnot cycle
Thus the net work done is given by the area under the path 1-2-3-4-1.

Importance of the Carnot Cycle

Heat engine efficiency depends on the maximum and minimum temperature of the cycle:
Carnot states that the efficiency of the heat engine is independent of the type of fluid and only depends upon the maximum and minimum temperatures during the cycle.

Thus the efficiency of the heat engine is higher when operates on super-heated steam temperature.
Carnot Cycle and Second law of thermodynamics:

Carnot cycle clearly demonstrated the fact that the heat is absorbed from the high-temperature source called reservoir and the heat is rejected to sink. This fact becomes the basis for the second law of thermodynamics. But external work is required in order to move the heat in the reverse direction.

Reversed Carnot Cycle

Carnot cycle is a reversible cycle, and it becomes the Carnot refrigeration cycle when the process reversed. The direction of heat and work interactions are totally reversed, thus
Thus,

  • Heat absorbed from low-temperature-reservoir is Ql

  • Heat rejected to a high-temperature-reservoir is Qh

  • Work done is Wnet-in

carnot cycle
Reversed Carnot cycle is the same as that of the conventional Carnot Cycle except for the direction of the processes.

History of Carnot Cycle

The Carnot cycle is named after “N. L. Sadi Carnot” who invented it in 1824. Sadi Carnot is referred to as the founder of thermodynamics for discovering the heat and work relationship. Carnot was one of the first to realize that heat is essentially works in a different form.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!