Rankine Cycle for Closed Feed Water Heaters and Rankine Cycle Cogeneration

Electrical4u
03/22/2024

What Is The Rankine Cycle

Rankine Cycle with Closed Feed Water Heaters

Rankine cycle with closed feed water heaters are having its benefits and is most commonly used in all modern power plants. Closed feed water heater employs indirect mode of heat transfer, i.e extracted steam or bleed steam from the turbine transfers its heat indirectly to feed water in shell and tube heat exchanger. Since the steam and water are not mixing directly, so both steam and water circuits are at different pressures. Close feed water heater in a cycle is represented on T-s diagram as shown below in Fig:1.

Theoretically or ideally heat transfer in closed feed water heater should be in such a way that the temperature of the feed water should be increased to that of the saturation temperature of the extraction steam (heating the feed water).

But in actual plant operation the maximum temperature which feed water can attend is normally slightly less than that of the saturation-temperature of the steam. The reason may be few degrees temperature gradient is required for the effective and efficient heat transfer.
heat addition with closed feed water heater
t s diagram
This condensate or condense steam from the heater shell shall be transferred to next heater (low- pressure) in the cycle or sometimes to the condenser.

Differentiate Between Open and Closed Feed Water Heater

The open and closed feed water heaters can be differentiated as follows:

Open feed water heater

Closed feed water heater

Open and simple

More complex in design

Good heat transfer characteristics

Less effective heat transfer

Direct mixing extraction steam and feed water temperature in a pressure vessel

In-direct mixing feed water and steam in a shell and tube type heat exchanger.

Pump is required to transfer the water into next stage in the cycle.

Closed feed water pumps don’t require pump and can operate with the pressure difference between the various heaters in the cycle.

Requires more area

Requires less area

Less expansive

More expensive

All modern day power plants are employing the combination of open and closed feed water heaters to maximise the thermal efficiency of the cycle.

Cogeneration Phenomenon

Engineering thermodynamics looks at converting the valuable form of energy (heat) to work. In power plants, this is done by transferring it to the working fluid called water. So the purpose is to avoid the wastage of heat of steam in the steam turbine condensers. This is possible if find the means to use the low-pressure steam going into the condenser.

Cogeneration is the concept of utilizing the heat of the steam for a useful purpose, rather than wasting it (currently wasted in the condensers).

Cogeneration means Combined Heat and Power (CHP) that is the generation of heat and power simultaneously for the industry requiring process heating steam. In cogeneration plant, both heat-and-power are judiciously utilized so the efficiency of it can be as high as 90% or more. Co-generation offers energy savings.
cogeneration principle
Cogeneration offers the reduction in wasting of large amount of steam and the same can be utilized in many devices in the form of heat. Most of the industries like paper and pulp, chemical, textile and fiber and cement are depending upon co-generation plant for process heating steam. Process heat steam requirement in above industries are in the order of 4 to 5 kg/cm2 at temperature around 150 to 180oC.

Paper, chemical and textile industries require both electric power and process steam to accomplish their objective. So this requirement can be easily meet through by installing cogeneration power plant.

Temperature in inside the boiler is of the order of 800oC to 900oC and the energy is transferred to the water to produce steam of pressure 105 bar and temperature around 535oC for co-generation power plants. Steam at these parameters are considered as of very good quality source of energy and is thus first utilized in steam turbine for producing power and the turbine exhaust (low quality energy) is used to meet the requirement of process steam.

Cogeneration plant is known for meeting the requirement of power while meeting the process steam requirement of Industrial processes.
ideal cogeneration plant
Ideal steam-turbine co-generation is shown in the figure 2 above. Let us say that the process heat requirement Qp is at 5.0 Kg/cm2 at around 100 KW. In order to meet the process steam requirement at 5.0 Kg/cm2 steam is expanded in the turbine till the pressure of the steam drop to 5.0 Kg/cm2 and thus produces the power around 20 KW.

The condensate from process heater is recycled backed to boiler for cyclic operation. Pump work required to raise the pressure of the feed the water in the cycle is considered as small so not considered.

All energy transferred to the working fluid in the boiler is used either in steam turbine or in process plant, thus utilization factor of the cogeneration plant is:

Where,
Qout Heat rejected in the.
Thus in the absence of the condenser the heat utilization factor of the cogeneration plant is 100%.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!