Working Principle of Wind Turbine

Electrical4u
03/20/2024

WechatIMG1818.jpeg

How Does Wind Turbine Work?

There is an air turbine of large blades attached on the top of a supporting tower of sufficient height. When wind strikes on the turbine blades, the turbine rotates due to the design and alignment of rotor blades. The shaft of the turbine is coupled with an electrical generator. The output of the generator is collected through electric power cables.

Working of Wind Turbine

When the wind strikes the rotor blades, blades start rotating. The turbine rotor is connected to a high-speed gearbox. Gearbox transforms the rotor rotation from low speed to high speed. The high-speed shaft from the gearbox is coupled with the rotor of the generator and hence the electrical generator runs at a higher speed. An exciter is needed to give the required excitation to the magnetic coil of the generator field system so that it can generate the required electricity. The generated voltage at output terminals of the alternator is proportional to both the speed and field flux of the alternator. The speed is governed by wind power which is out of control. Hence to maintain uniformity of the output power from the alternator, excitation must be controlled according to the availability of natural wind power. The exciter current is controlled by a turbine controller which senses the wind speed. Then output voltage of electrical generator(alternator) is given to a rectifier where the alternator output gets rectified to DC. Then this rectified DC output is given to line converter unit to convert it into stabilized AC output which is ultimately fed to either electrical transmission network or transmission grid with the help of step up transformer. An extra units is used to give the power to internal auxiliaries of wind turbine (like motor, battery etc.), this is called Internal Supply Unit.
There are other two control mechanisms attached to a modern big wind turbine.

  • Controlling the orientation of the turbine blade.

  • Controlling the orientation of the turbine face.

The orientation of turbine blades is governed from the base hub of the blades. The blades are attached to the central hub with the help of a rotating arrangement through gears and small electric motor or hydraulic rotary system. The system can be electrically or mechanically controlled depending on its design. The blades are swiveled depending upon the speed of the wind. The technique is called pitch control. It provides the best possible orientation of the turbine blades along the direction of the wind to obtain optimized wind power.

The orientation of the nacelle or the entire body of the turbine can follow the direction of changing wind direction to maximize mechanical energy harvesting from the wind. The direction of the wind along with its speed is sensed by an anemometer (automatic speed measuring devices) with wind vanes attached to the back top of the nacelle. The signal is fed back to an electronic microprocessor-based controlling system which governs the yaw motor which rotates the entire nacelle with gearing arrangement to face the air turbine along the direction of the wind.
An internal Block diagram of a wind turbine
wind turbine


Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!