Induction Cup Relay Working Principle Construction and Types

Electrical4u
03/26/2024

What Is Induction Cup Relay

Induction Cup Relay

This relay in nothing but one version of induction disc relay. Induction cup relay work in same principle of induction disc relay. The basis construction of this relay is just like four poles or eight pole induction motor. The number of poles in the protective relay depends upon the number of winding to be accommodated. The figure shows a four pole induction cup relay.
Actually when any one replaces disc of induction relay by a aluminum cup, the inertia of rotating system of relay is significantly reduced. Due to low mechanical inertia, the operating speed of induction cup relay is much higher than that of induction disc relay. Moreover, projected pole system is designed to give maximum torque per VA input.

In four pole unit, shown in our example, the eddy current produced in the cup due to one pair of poles, directly appears under other pair of poles. This makes, torque per VA of this relay is about three times more than that of induction disc type relay with a C-shaped electromagnet. If magnetic saturation of the poles can be avoided by designing, the operating characteristics of the relay can be made linear and accurate for a wide range of operation.

Working Principle of Induction Cup Relay

As we said earlier, the working principle of induction cup relay, is same as the induction motor. A rotating magnetic field is produced by different pairs of field poles. In four poles design both pair of poles are supplied from same current transformer’s secondary, but phase difference between the currents of two pole pairs is 90 deg; This is done by inserting an inductor in series with coil of one pole pair, and by inserting a resistor in series with coil of another pole pair.

The rotating magnetic field induces current in the aluminum brum or cup. As per working principle of induction motor, the cup starts rotating in the direction of rotating magnetic field, with a speed slightly less than the speed of rotating magnetic field. The aluminum cup is attached with a hair spring : In normal condition the restoring torque of the spring is higher than deflecting torque of the cup. So there is no movement of the cup. But during faulty condition of system, the current through the coil is quite high, hence, deflecting torque produced in the cup is much higher than restoring torque of spring, hence the cup start rotating as rotor of induction motor. The contacts attached to the moving of the cup to specific angle of rotation.

Construction of Induction Cup Relay

The magnetic system of the relay is constructed by attaching numbers of circular cut steel sheets. The magnetic pole are projected in the inner periphery of these laminated sheets.
The field coils are wound on these laminated poles. The field coil of two opposite facing poles are connected in series.
The aluminum cup or drum, fitted on a laminated iron core is carried by a spindle whose ends fit in jeweled cups or bearings. The laminated magnetic field is provided on inside the cup or drum to strengthen the
magnetic field cutting the cup.
induction cup type relay

Induction Cup Directional or Power Relay

Induction cup relay is very suitable for directional or phase comparison units. This is because, besides the sensitivity, induction cup relay have steady non vibrating torque and parasitic torques due to current or voltage alone are small.

In induction cup directional or power relay, coils of one pair of poles are connected across voltage source, and coils of another pair of poles are connected with current source of the system. Hence, flux produced by one pair of poles is proportional to voltage and flux produced by another pair of poles is proportional to electric current.
The vector diagram of this relay can be represented as follows,
vector diagram of cup relay
Here, in the vector diagram, the angle between system voltage V and current I is θ
The flux produced due to current I is φ1 which is in phase with I.
The flux produced due to voltage V, is φ2 which is in quadrature with V.
Hence, angle between φ1 and φ2 is (90o – θ).
Therefore, if torque produced by these two fluxes is Td.

Where, K is constant of proportionality.
Here in this equation we have assumed that,
flux produced by voltage coil lags 90o behind its voltage. By designing this angle can be made to approach any value and a torque equation T = KVIcos (θ – φ) obtained where θ is angle between V and I. Accordingly, induction cup relays can be designed to produce maximum torque when the angle θ = 0 or 30o, 45o or 60o.
The relays which are such designed, that, they produce maximum torque at θ = 0, is P induction cup power relay.
The relays produce maximum torque when θ = 45o or 60o, are used as directional protection relay.

Reactance and MHO type Induction Cup Relay

By manipulating the current voltage coil arrangements and the relative phase displacement angles between the various fluxes, induction cup relay can be made to measure either pure reactance or admittance. Such characteristics are discussed in greater detail in a session on electromagnetic distance relay.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!