Why is the Ground Wire Always Positioned Above the Overhead Power Lines?

Edwiin
06/04/2025

Ground Wire in Overhead Transmission Lines
The ground wire (also called earth wire or OPGW) installed above phase lines in overhead transmission lines acts as a key protective and safety component. It provides lightning protection, ground fault defense, and helps prevent electrical system disruptions.
In overhead transmission lines, positioning the ground wire above phase lines serves specific safety and performance purposes. Referred to as a "shield wire" or "static wire," this configuration has several critical functions:
1. Lightning Protection
The primary role of installing ground wires above phase conductors in overhead transmission lines is to shield the system from lightning strikes. Lightning, a natural phenomenon, often targets tall structures like transmission towers. By positioning the earth wire above the phase lines, it acts as a physical barrier to intercept lightning and safely channel its high-energy currents to the ground through tower grounding systems. This mechanism diverts lightning away from phase conductors, significantly reducing the risk of equipment damage or power outages caused by transient overvoltages.
2. Ground Fault Protection
Ground wires, which are periodically grounded along the line, maintain electrical system integrity by providing a low-resistance fault current path. During ground faults (e.g., phase conductors contacting towers or vegetation), this configuration quickly diverts fault currents to the ground, enabling protective relays to detect and clear faults faster. By minimizing the impedance of the return path, the overhead ground wire reduces the likelihood of phase-to-ground faults that could disrupt grid stability.
3. Wildlife Contact Prevention
Overhead lines face risks from wildlife interfering with conductors. The elevated ground wire acts as a physical deterrent for birds and other animals, discouraging them from landing on or perching above phase lines. This reduces the probability of faults caused by animal contact—such as short circuits from birds spanning phase conductors or squirrels climbing towers—thereby improving system reliability.
4. Visual Marking for Aviation Safety
Ground wires, often painted in bright, high-visibility colors, serve as critical visual markers for aircraft. This feature helps pilots identify transmission line corridors, particularly in low-visibility conditions, and prevents accidental collisions with overhead infrastructure. In regions with frequent air traffic, such as urban areas or near airports, this function is essential for ensuring both aviation safety and uninterrupted power supply.
5. Dual Function as Optical Ground Wire (OPGW)
Notably, modern ground wires often integrate optical fiber technology, forming an Optical Ground Wire (OPGW). This composite structure serves a dual purpose:
  • Communication: The embedded optical fibers enable high-speed data transmission for SCADA systems, remote monitoring, and grid automation.
  • Grounding: The metallic structure maintains its role as a lightning protection and fault current conductor.
Conclusion
In Vietnam’s 220kV and 500kV networks, OPGW has become standard, allowing real-time grid management while enhancing lightning resilience in overhead lines spanning mountainous or thunderstorm-prone regions.
The strategic placement of ground wires above phase conductors in overhead transmission lines embodies a blend of safety, reliability, and technological innovation. From shielding against lightning and fault currents to enabling smart grid communications, these components are indispensable for modern power systems—especially in countries like Vietnam, where diverse topography and climatic conditions demand robust overhead line designs. As grids evolve toward smarter infrastructure, OPGW will continue to integrate protection and connectivity, driving the next generation of resilient power distribution.
Edwiin

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!