Surge Impedance Loading or SIL

Electrical4u
03/22/2024

What Is Surge Impedance Loading

Surge Impedance Loading is a very essential parameter when it comes to the study of power systems as it is used in the prediction of maximum loading capacity of transmission lines.
However before understanding SIL, we first need to have an idea of what is Surge Impedance (Zs). It can be defined in two ways one a simpler one and other a bit rigorous.
Method 1
It is a well known fact that a
long transmission lines (> 250 km) have distributed inductance and capacitance as its inherent property. When the line is charged, the capacitance component feeds reactive power to the line while the inductance component absorbs the reactive power. Now if we take the balance of the two reactive powers we arrive at the following equation

Capacitive VAR = Inductive VAR

Where,
V = Phase voltage
I = Line Current
Xc =
Capacitive reactance per phase
XL = Inductive reactance per phase
Upon simplifying

Where,
f = Frequency of the system
L = Inductance per unit length of the line
l = Length of the line
Hence we get,

This quantity having the dimensions of resistance is the Surge Impedance. It can be considered as a purely resistive load which when connected at the receiving end of the line, the reactive power generated by capacitive reactance will be completely absorbed by inductive reactance of the line.
It is nothing but the Characteristic Impedance (Zc) of a lossless line.

Method 2
From the rigorous solution of a
long transmission line we get the following equation for voltage and current at any point on the line at a distance x from the receiving end

Where,
Vx and Ix = Voltage and Current at point x
VR and IR = Voltage and Current at receiving end
Zc = Characteristic Impedance
δ = Propagation Constant

Z = Series impedance per unit length per phase
Y = Shunt admittance per unit length per phase
Putting the value of δ in above equation of voltage we get

Where,

We observe that the instantaneous voltage consists of two terms each of which is a function of time and distance. Thus they represent two travelling waves. The first one is the positive exponential part representing a wave travelling towards receiving end and is hence called the incident wave. While the other part with negative exponential represents the reflected wave. At any point along the line, the voltage is the sum of both the waves. The same is true for current waves also.
Now, if suppose the load impedance (ZL) is chosen such that ZL = Zc, and we know

Thus

and hence the reflected wave vanishes. Such a line is termed as infinite line. It appears to the source that the line has no end because it receives no reflected wave.
Hence, such an impedance which renders the line as infinite line is known as surge impedance.It has a value of about 400 ohms and phase angle varying from 0 to –15 degree for overhead lines and around 40 ohms for underground cables.

The term surge impedance is however used in connection with surges on the transmission line which may be due to lightning or switching, where the line losses can be neglected such that

Now that we have understood Surge Impedance, we can easily define Surge Impedance Loading.
SIL is defined as the power delivered by a line to a purely resistive load equal in value to the surge impedance of that line. Hence we can write

The unit of SIL is Watt or MW.
When the line is terminated by surge impedance the receiving end voltage is equal to the sending end voltage and this case is called flat voltage profile. The following figure shows the voltage profile for different loading cases.
surge impedance loading or sil
It should also be noted that surge impedance and hence SIL is independent of the length of the line. The value of surge impedance will be the same at all the points on the line and hence the voltage.
In case of a Compensated Line, the value of surge impedance will be modified accordingly as

Where, Kse = % of series capacitive compensation by Cse

KCsh = % of Shunt capacitive compensation by Csh

Klsh = % of shunt inductive compensation by Lsh

The equation for SIL will now use the modified Zs.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!