• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Steady State Stability

Electrical4u
Field: Basic Electrical
0
China

What Is Steady State Stability

As an introduction, we need to know about power state stability. It is really the capability of the system to return to its steady state condition after subjected to certain disturbances. We can now consider a synchronous generator to understand the power system stability. The generator is in synchronism with the other system connected to it. The bus connected to it and the generator will have same phase sequence, voltage and the frequency. So, we can say that the power system stability here is the capability of the power system to come back to its steady condition without affecting synchronism when subjected to any disturbances. This system stability is classified into – Transient Stability, Dynamic Stability and Steady State Stability.

system stabilityTransient Stability: Study of power system which are subjected to sudden major disturbances.
Dynamic Stability: Study of power system which are subjected to small continuous disturbances.

Steady State Stability

It is the study which implies small and gradual variations or changes in the working state of the system. The purpose is to determine the higher limit of loading in the machine before going to lose the synchronism. The load is increased slowly.

The highest power which can be transferred to the receiving end of the system without affecting the synchronism is termed as Steady State Stability limit.
steady state stabilityThe Swings equation is known by

Pm → Mechanical power
Pe → Electrical power
δ → Load angle
H → Inertia constant
ωs → Synchronous speed
Consider the above system (figure above) which is operating on steady state power transfer of

Assume the power is increased by a small amount say Δ Pe. As a result, the rotor angle becomesfrom δ0.

p → frequency of oscillation.The characteristic equation is used to determine the system stability due to small changes.

Conditions for System Stability


Without loss of stability, the Maximum power transfer is given by

Assume, the condition when the system is in operation with lower than the steady state stability limit. Then, it may oscillate continuously for a lengthy time if the damping is very low. The oscillation which persists is a hazard to system security. The |Vt| should be kept constant for each load by adjusting the excitation. This is to maintain the steady state stability limit.

  • A system can never be operated higher than its steady state stability limit but it can operate beyond the transient stability limit.

  • By reducing the X (reactance) or by raising the |E| or by increasing the |V|, the improvement of steady state stability limit of the system is possible.

  • Two systems to improve the stability limit are quick excitation voltage and higher excitation voltage.

  • To reduce the X in the transmission line which is having high reactance, we can employ parallel line.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!

Recommended

Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Neutral point grounding operation mode for 110kV~220kV power grid transformers
The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
01/29/2026
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
01/29/2026
HECI GCB for Generators – Fast SF6 Circuit Breaker
1.Definition and Function1.1 Role of the Generator Circuit BreakerThe Generator Circuit Breaker (GCB) is a controllable disconnect point located between the generator and the step-up transformer, serving as an interface between the generator and the power grid. Its primary functions include isolating generator-side faults and enabling operational control during generator synchronization and grid connection. The operating principle of a GCB is not significantly different from that of a standard c
01/06/2026
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.