Transient Stability in Power System

Electrical4u
03/22/2024

What Is Transient Stability In Power System

The ability of a synchronous power system to return to stable condition and maintain its synchronism following a relatively large disturbance arising from very general situations like switching ON and OFF of circuit elements, or clearing of faults, etc. is referred to as the transient stability in power system. More often than not, the power generation systems are subjected to faults of this kind, and hence its extremely important for power engineers to be well-versed with the stability conditions of the system.
In general practice studies related to transient stability in the power system are done over a minimum period equal to the time required for one swing, which approximates to around 1 sec or even less. If the system is found to be stable during this first swing, its assumed that the disturbance will reduce in the subsequent swings, and the system will be stable after that as is the case. Now to mathematically determine whether a system is stable or not we need to derive the swing equation of
power system.

Swing Equation for Determining Transient Stability

swing equationIn order to determine the transient stability of a power system using swing equation, let us consider a synchronous generator supplied with input shaft power PS producing mechanical torque equal to TS as shown in the figure below. This makes the machine rotate at a speed of ω rad/sec and the output electromagnetic torque and power generated on the receiving end are expressed as TE and PE respectively.
When, the synchronous generator is fed with a supply from one end and a constant load is applied to the other, there is some relative angular displacement between the rotor axis and the stator
magnetic field, known as the load angle δ which is directly proportional to the loading of the machine. The machine at this instance is considered to be running under a stable condition.

Now if we suddenly add or remove load from the machine the rotor decelerates or accelerates accordingly with respect to the stator magnetic field. The operating condition of the machine now becomes unstable and the rotor is now said to be swinging w.r.t the stator field and the equation we so obtain giving the relative motion of the load angle δ w.r.t the stator magnetic field is known as the swing equation for transient stability of a power system.
Here for the sake of understanding, we consider the case where a synchronous generator is suddenly applied with an increased amount of electromagnetic load, which leads to instability by making PE less than PS as the rotor undergoes deceleration. Now the increased amount of the accelerating power required to bring the machine back to a stable condition is given by,

Similarly, the accelerating torque is given by,

Now we know that

(since T = current × angular acceleration)
Furthermore, angular momentum, M = Iω

But since on loading the angular displacement θ varies continuously with time, as shown in the figure below, we can write.

swing equation with angular position

Double differentiating the above equation w.r.t time, we get,

where angular acciletation

Thus we can write,

Now the electromagnetic power transmitted is given by,

Thus we can write,

This is known as the swing equation for transient stability in power system.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!