• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Conductor Resistance Test of Electrical Power Cables

Electrical4u
Field: Basic Electrical
0
China

What Is Conductor Resistance Test

This test is used to determine the DC resistance of copper or aluminum conductors. Resistance of a conductor tells us how easily a conductor allows the flow of current through it. Higher the resistance, lesser the current will flow though the conductor. Resistance of a conductor is influenced by conductor dimension and construction, conditions like, temperature and resistivity. It is normally expressed as ohms per km.
This test will make use of either
Kelvin Double Bridge with accuracy of 0.2 percent or Wheatstone Bridge with accuracy of 0.5 percent.
Test specimen is selected as indicated below.

  • All solid circular conductor Drum length of 1 m

  • All stranded or sector shaped solid conductors up to and including 25 mm2 size Drum length of 5 m

  • All stranded or sector shaped solid conductors greater than 25 mm2 size Drum length of 10 m

Note – The length of the test specimen is the length which lies between the potential terminals.

Procedure of Conductor Resistance Test

Connect the specimen to the resistance measuring bridge and make sure that proper considerations are taken into account about the contact resistance.
Measure the resistance and note down the temperature.
Measured resistance is converted to the standard temperature and length.

Observation and Report

Sample no

Nominal conductor size in mm2

Length (m)

Material Al/Cu

Class of conductor

Temperature oC

Observed Resistance

Specified Resistance

Calculation

Observed Resistance at a particular temperature,
Where,
Rt = Observed Resistance
K = Temperature correction factor
L = Length of specimen in m.
Conclusion – The sample meets/does not meet the requirements of the specification.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Give a tip and encourage the author!

Recommended

Faults and Handling of Single-phase Grounding in 10kV Distribution Lines
Characteristics and Detection Devices for Single-Phase Ground Faults1. Characteristics of Single-Phase Ground FaultsCentral Alarm Signals:The warning bell rings, and the indicator lamp labeled “Ground Fault on [X] kV Bus Section [Y]” illuminates. In systems with a Petersen coil (arc suppression coil) grounding the neutral point, the “Petersen Coil Operated” indicator also lights up.Insulation Monitoring Voltmeter Indications:The voltage of the faulted phase decreases (in
01/30/2026
Neutral point grounding operation mode for 110kV~220kV power grid transformers
The arrangement of neutral point grounding operation modes for 110kV~220kV power grid transformers shall meet the insulation withstand requirements of transformer neutral points, and shall also strive to keep the zero-sequence impedance of substations basically unchanged, while ensuring that the zero-sequence comprehensive impedance at any short-circuit point in the system does not exceed three times the positive-sequence comprehensive impedance.For 220kV and 110kV transformers in new constructi
01/29/2026
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?
Why Do Substations Use Stones, Gravel, Pebbles, and Crushed Rock?In substations, equipment such as power and distribution transformers, transmission lines, voltage transformers, current transformers, and disconnect switches all require grounding. Beyond grounding, we will now explore in depth why gravel and crushed stone are commonly used in substations. Though they appear ordinary, these stones play a critical safety and functional role.In substation grounding design—especially when multiple gr
01/29/2026
HECI GCB for Generators – Fast SF6 Circuit Breaker
1.Definition and Function1.1 Role of the Generator Circuit BreakerThe Generator Circuit Breaker (GCB) is a controllable disconnect point located between the generator and the step-up transformer, serving as an interface between the generator and the power grid. Its primary functions include isolating generator-side faults and enabling operational control during generator synchronization and grid connection. The operating principle of a GCB is not significantly different from that of a standard c
01/06/2026
Related Products
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.