Generator Synchronization

Edwiin
05/26/2025

A stationary generator must never be connected to live busbars, as the induced electromotive force (EMF) is zero at standstill, which would cause a short circuit. The synchronization procedure and the equipment used for checking it are identical whether one alternator is to be connected in parallel with another alternator or an alternator is to be connected to an infinite bus.

Synchronisation via Synchronising Lamps

A set of three synchronizing lamps can be employed to verify the conditions for paralleling or synchronizing an incoming machine with another. The dark lamp method—used in conjunction with a voltmeter for synchronization—is illustrated below. This approach is suitable for low-power machines.

Synchronization Process Using Synchronizing Lamps
  • Prime Mover and Voltage Adjustment
    • Start the prime mover of the incoming machine and accelerate it to near its rated speed.
    • Adjust the field current of the incoming machine until its output voltage matches the bus voltage.
  • Frequency and Phase Detection
    • The three synchronizing lamps will flicker at a rate proportional to the frequency difference between the incoming machine and the bus.
    • Phase Sequence Check: If all lamps glow and dim simultaneously, the phase connections are correct. If not, the phase sequence is misaligned.
  • Corrective Actions and Switch Closure
    • To rectify phase sequence, interchange any two line leads of the incoming machine.
    • Fine-tune the incoming machine’s frequency until the lamps flicker at a rate of less than one dark period per second.
    • After final voltage adjustment, close the synchronizing switch at the midpoint of the dark period to minimize voltage discrepancy.

Advantages of the Dark Lamp Method

  • Cost-efficient compared to other synchronization techniques.
  • Enables straightforward verification of correct phase sequence.

Disadvantages of the Dark Lamp Method

  • Lamps appear dark at approximately 50% of their rated voltage, risking switch closure during residual phase differences.
  • Frequent voltage fluctuations may cause filament burnout.
  • Flicker behavior does not indicate whether the incoming frequency is higher or lower than the bus frequency.

Three Bright Lamp Method

  • Connection Scheme: Lamps are cross-connected across phases (e.g., A1-B2, B1-C2, C1-A2).
  • Synchronization Cue: If all lamps brighten and dim in unison, the phase sequence is correct.
  • Optimal Switching: Close the switch at the peak of the bright period.

Two Bright One Dark Lamp Method

  • Connection Configuration: One lamp is connected between corresponding phases (e.g., A1-A2), while the other two are cross-connected (e.g., B1-C2, C1-B2), as illustrated below.
  • Phase Indication: The correct phase sequence is confirmed when one lamp remains dark while the other two alternate between brightness and darkness.

Connection Configuration and Synchronization Steps
In this setup, A1 is connected to A2, B1 to C2, and C1 to B2. The prime mover of the incoming machine is started and accelerated to its rated speed. The excitation of the incoming machine is adjusted such that the induced voltages EA1, EB2, EC3 match the busbar voltages VA1, VB1, VC1. The corresponding diagram is illustrated below.
Optimal Switch Closure and Phase Sequence Verification
The ideal moment to close the synchronizing switch occurs when the directly connected lamp (A1-A2) is fully dark while the cross-connected lamps (B1-C2, C1-B2) are equally bright. If the phase sequence is incorrect, this condition will not be met, and all lamps will either remain dark or flicker out of sync.
To correct the phase sequence, swap any two line connections of the incoming machine. Since the dark range of incandescent lamps spans a significant voltage interval (typically 40-60% of rated voltage), a voltmeter (V1) is connected across the directly connected lamp. The switch should be closed when the voltmeter reads zero, indicating minimal voltage difference between the incoming machine and the busbar.
Operational Modes and Automation
Once synchronized, the incoming machine "floats" on the busbar and can begin delivering power as a generator. If the prime mover is disengaged while connected, the machine will operate as a motor, drawing power from the grid.
  • Small-Scale Synchronization: In low-power applications, three-lamp methods are often supplemented with a synchroscope to verify frequency matching.
  • Large-Scale Automation: For high-capacity generators in power stations, computerized systems execute the entire synchronization process autonomously, ensuring precision and safety.
Edwiin

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!