• 15kV 27kV 38kV Three-phase outdoor vacuum recloser for SCADA switch applications
15kV 27kV 38kV Three-phase outdoor vacuum recloser for SCADA switch applications
discuss personally
Model
OVR-38-1200
OVR-27-1000
OVR-15-630
Basic info
Brand ABB
Model NO. 15kV 27kV 38kV Three-phase outdoor vacuum recloser for SCADA switch applications
Rated voltage 38kV
Rated normal current 1200A
Rated frequency 50/60Hz
Series OVR
Product Detail

Product Introduction

Versatility with increased reliability and safety

With over 21 years of proven field performance and advanced design, the OVR recloser provides the most reliable recloser for grid modernization and optimization. ABB’s OVR recloser is one of the most flexible devices for network automatic restoration. In addition to reliability improvement and reduction of SAIDI, SAIFI and MAIFI indexes, ABB's OVR recloser can be used as an automatic loadbreak switch or as a sectionalizer. This flexibility in functionality makes the OVR recloser the perfect solution for a smarter grid.

Key features

Key features highlight the product’s innovative design, high-performance capabilities, and operational advantages, ensuring optimal suitability for diverse industrial and power system requirements.

  • Gang-operated three-phase tripping
  • RER615 2.0 ABB Relion® Protection
  • Optionally available with SEL 751 IED with basic Feeder protection functionalities, offering flexibility in protection relay selection
  • Integrated current and voltage measurement
  • Also reliable in extreme conditions like high polluted environments
  • Rated at up to 38 kV, 16 kA solid dielectric
  • High-impedance fault detection
  • IEC61850 native: communication protocol flexibility: IEC 61850, Modbus and DNP or IEC 61850 and IEC 101/104
  • Standard web browser used to check the current system status of an ABB Relion® relay

Technical data

Key benefits underscore the product’s reliability, efficiency, and cost-effectiveness, delivering tangible value for power distribution and industrial applications.

Key benefits

Key benefits underscore the product’s reliability, efficiency, and cost-effectiveness, delivering tangible value for power distribution and industrial applications.

  • Increased reliability - the highest creep distance among the recloser poles on the market ensures long-term performance in any environment
  • Unparalleled performance - the HCEP (Hydrophobic Cycloaliphatic Epoxy) material of the poles provides the best insulation for outdoor use, shedding water and debris, thus reducing the probability of flashovers even in heavily polluted areas
  • Simple, fast and safe maintenance as all the electronics are in the low-voltage range, eliminating the need for a bucket truck to isolate potentials to service electronics
  • Easy integration with ABB Relion® protection RER615 2.0, capable of programming grid applications. Optionally available with SEL 751 IED with basic Feeder protection functionalities.
  • Solid dielectric recloser: ABB vacuum interrupters and sensors embedded in each recloser pole
Know your supplier
ABB
As an authorized distributor of ABB products, we take great pride in our partnership.
Main Categories
High Voltage Electrical Apparatus/Low Voltage Electrical Apparatus
Business Type
Sales
Highest Annual Export (USD)
$580000000
Professional Experience
11 years
Workplace
20000m²
占位
占位
Related Products
Related Knowledges
Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
For users, when purchasing a 35kV new energy transformer, choosing between dry-type, mineral oil-filled, or vegetable oil-filled types involves multiple considerations. These include user habits, maintenance-free performance, safety and fire resistance, volume and weight, among others. However, cost differences are undoubtedly one of the most crucial factors.To illustrate the issue intuitively, this paper selects a three-level energy efficiency dual-winding new energy transformer with a rated ca
Ron
07/26/2025
What is the connection group of a transformer?
What is the connection group of a transformer?
Transformer Connection GroupThe connection group of a transformer refers to the phase difference between the primary and secondary voltages or currents. It is determined by the winding directions of the primary and secondary coils, the labeling of their start and end terminals, and the connection mode. Expressed in a clock-like format, there are 12 groups in total, numbered from 0 to 11.The DC method is commonly used to measure the transformer's connection group, mainly to verify whether the con
Vziman
07/26/2025
Working Voltage in Power System
Working Voltage in Power System
Working VoltageThe term "working voltage" refers to the maximum voltage that a device can withstand without sustaining damage or burning out, while ensuring the reliability, safety, and proper operation of both the device and associated circuits.For long-distance power transmission, the use of high voltage is advantageous. In AC systems, maintaining a load power factor as close to unity as possible is also economically necessary. Practically, heavy currents are more challenging to handle than hi
Encyclopedia
07/26/2025
What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is the sequence for powering down the transformer?
What is the sequence for powering down the transformer?
The sequence for shutting down a main transformer is as follows: when de-energizing, the load side should be shut down first, followed by the power supply side. For energizing operations, the reverse order applies: the power supply side is energized first, then the load side. This is because: Energizing from the power supply side to the load side makes it easier to identify the fault range and take prompt judgment and handling measures in case of a fault, preventing the fault from spreading or e
Rockwell
07/26/2025
What are the methods for switching operations of station transformers?
What are the methods for switching operations of station transformers?
Let's take an auxiliary power system with two station transformers as an example. When one station transformer needs to be out of service, there are two operation methods: non-interruptive power supply and instantaneous power interruption. Generally, the method of instantaneous power interruption on the low-voltage side is preferred.The operation method for instantaneous power interruption on the low-voltage side is as follows:Open the 380V power incoming circuit breaker of the corresponding sec
Vziman
07/26/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!