• 9.6kWh-143kWh Combined type-high voltage energy storage battery
  • 9.6kWh-143kWh Combined type-high voltage energy storage battery
  • 9.6kWh-143kWh Combined type-high voltage energy storage battery
9.6kWh-143kWh Combined type-high voltage energy storage battery
$38016.00
Model
DSH-30K
DSH-30K
DSH-25K
DSH-25K
DSH-20K
DSH-20K
DSH-15K
DSH-15K
DSH-10K
DSH-10K
DDH-143K
DDH-143K
DDH-120K
DDH-120K
DDH-107K
DDH-107K
DDH-80K
DDH-80K
DDH-68K
DDH-68K
DDH-54K
DDH-54K
DDH-40K
DDH-40K
DDH-27K
DDH-27K
DCH-75K
DCH-75K
DCH-50K
DCH-50K
DCH-45K
DCH-45K
DCH-40K
DCH-40K
DCH-30K
DCH-30K
DCH-25K
DCH-25K
DCH-20K
DCH-20K
DCH-15K
DCH-15K
DCH-10K
DCH-10K
Basic info
Brand POWERTECH
Model NO. Combined type-high voltage energy storage battery
Mounting type Stack mounting
Energy storage capacity 28.8kWh
Master-slave mode 1 host 6 slave
System architecture Overall-Master-Slave
Series Industrial&Commercial energy storage
Product Detail

Combined type-high voltage energy storage battery free combination

自由堆叠.png

Technical parameter

DCH series (Rack stack install)

image.png

DDH seriesCabinet drawer type install

image.png

DSH seriesgravity-stacked

image.png

Unified parameter description:

Secondary architecture: The BMU and BCU control the data monitoring, charge and discharge, and energy management of the energy storage system.

Three-tier architecture: The BMU controller, BCU controller, and BAU controller are responsible for hierarchical management of modules and PACK clusters, and communication and control of air conditioners and fire fighting devices.

Fire protection: Cabinet type high pressure energy storage adopts a two-level fire protection scheme. A single battery contains 12g aerosol monomer automatic fire extinguishing device, and 300g aerosol monomer automatic fire extinguishing device in the cabinet.

Cell: Square aluminum shell lithium iron phosphate battery

Screen: High voltage system optional display: secondary structure add 500RMB, tertiary structure add 1800 RMB.

Life: 6000 cycles of product A standard DOD 80%/25/0.5C.

Communication mode: RS485/RS232/CAN Communication options: Bluetooth/WiFi.

What is High Voltage Direct Current (HVDC) technology?

High Voltage Direct Current (HVDC) technology is a technology used for long-distance power transmission. It is characterized by using direct current instead of traditional alternating current (AC).

Working principle.

  • Rectification:At the sending end, alternating current (AC) is converted into direct current (DC) through a rectifier.The rectifier is usually based on a thyristor rectifier or other solid-state switching devices such as IGBT (Insulated Gate Bipolar Transistor).

  • Transmission:The converted direct current is transmitted through high-voltage direct current cables or lines.

  • Since direct current does not generate inductive reactance and capacitive reactance, it has lower losses and is suitable for long-distance transmission.

  • Inversion:At the receiving end, direct current is converted back into alternating current (AC) through an inverter.

        The inverter also uses thyristors or other solid-state switching devices.


Know your supplier
POWERTECH
We are an electrical company that manufactures and sells high and low voltage electrical products.
Main Categories
High Voltage Electrical Apparatus
Business Type
Design/Manufacture/Sales
Highest Annual Export (USD)
$120000000
Professional Experience
7 years
Workplace
580000m²
占位
占位
Related Products
Related Knowledges
Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
For users, when purchasing a 35kV new energy transformer, choosing between dry-type, mineral oil-filled, or vegetable oil-filled types involves multiple considerations. These include user habits, maintenance-free performance, safety and fire resistance, volume and weight, among others. However, cost differences are undoubtedly one of the most crucial factors.To illustrate the issue intuitively, this paper selects a three-level energy efficiency dual-winding new energy transformer with a rated ca
Ron
07/26/2025
What is the connection group of a transformer?
What is the connection group of a transformer?
Transformer Connection GroupThe connection group of a transformer refers to the phase difference between the primary and secondary voltages or currents. It is determined by the winding directions of the primary and secondary coils, the labeling of their start and end terminals, and the connection mode. Expressed in a clock-like format, there are 12 groups in total, numbered from 0 to 11.The DC method is commonly used to measure the transformer's connection group, mainly to verify whether the con
Vziman
07/26/2025
Working Voltage in Power System
Working Voltage in Power System
Working VoltageThe term "working voltage" refers to the maximum voltage that a device can withstand without sustaining damage or burning out, while ensuring the reliability, safety, and proper operation of both the device and associated circuits.For long-distance power transmission, the use of high voltage is advantageous. In AC systems, maintaining a load power factor as close to unity as possible is also economically necessary. Practically, heavy currents are more challenging to handle than hi
Encyclopedia
07/26/2025
What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is the sequence for powering down the transformer?
What is the sequence for powering down the transformer?
The sequence for shutting down a main transformer is as follows: when de-energizing, the load side should be shut down first, followed by the power supply side. For energizing operations, the reverse order applies: the power supply side is energized first, then the load side. This is because: Energizing from the power supply side to the load side makes it easier to identify the fault range and take prompt judgment and handling measures in case of a fault, preventing the fault from spreading or e
Rockwell
07/26/2025
What are the methods for switching operations of station transformers?
What are the methods for switching operations of station transformers?
Let's take an auxiliary power system with two station transformers as an example. When one station transformer needs to be out of service, there are two operation methods: non-interruptive power supply and instantaneous power interruption. Generally, the method of instantaneous power interruption on the low-voltage side is preferred.The operation method for instantaneous power interruption on the low-voltage side is as follows:Open the 380V power incoming circuit breaker of the corresponding sec
Vziman
07/26/2025
×
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!