Mesh Current Analysis Method

Edwiin
06/02/2025

The Mesh Current Analysis Method is utilized to analyze and solve electrical networks with multiple sources or circuits comprising numerous meshes (loops) containing voltage or current sources. Also known as the Loop Current Method, this approach involves assuming a distinct current for each loop and determining the polarities of voltage drops across loop elements based on the assumed direction of the loop current.
In mesh current analysis, the unknowns are the currents in different meshes, and the governing principle is Kirchhoff’s Voltage Law (KVL), which states:
"In any closed circuit, the net applied voltage equals the sum of the products of current and resistance. Alternatively, in the direction of current flow, the sum of voltage rises within the loop is equal to the sum of voltage drops."
Let us understand the Mesh Current method with the help of the circuit shown below:

In the Above Network

  • R1, R2, R3, R4, and R5 represent various resistances.
  • V1 and V2 are voltage sources.
  • I1 is the current flowing in mesh ABFEA.
  • I2 is the current flowing in mesh BCGFB.
  • I3 is the current flowing in mesh CDHGC.
  • For simplicity in network analysis, the current direction is assumed to be clockwise in all meshes.
Steps for Solving Networks via Mesh Current Method
Using the circuit diagram above, the following steps outline the mesh current analysis process:
Step 1 – Identify Independent Meshes/Loops
First, identify the independent circuit meshes. The diagram above contains three meshes, which are considered for analysis.
Step 2 – Assign Circulating Currents to Each Mesh
Assign a circulating current to each mesh, as shown in the circuit diagram (I1, I2, I3 flowing in each mesh). To simplify calculations, it is preferable to assign all currents in the same clockwise direction.
Step 3 – Formulate KVL Equations for Each Mesh
Since there are three meshes, three KVL equations will be derived:
Applying KVL to Mesh ABFEA:
Step 4 – Solve Equations (1), (2), and (3) simultaneously to obtain the values of currents I1​, I2​, and I3​.
With the mesh currents known, various voltages and currents in the circuit can be determined.
Matrix Form
The above circuit can also be solved using the matrix method. The matrix form of Equations (1), (2), and (3) is expressed as:

Where,

  • [R] is the mesh resistance
  • [I] is the column vector of mesh currents and
  • [V] is the column vector of the algebraic sum of all the source voltages around the mesh.

This is all about the mesh current analysis method.

Edwiin

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

Working Voltage in Power System
Working Voltage in Power System
Working VoltageThe term "working voltage" refers to the maximum voltage that a device can withstand without sustaining damage or burning out, while ensuring the reliability, safety, and proper operation of both the device and associated circuits.For long-distance power transmission, the use of high voltage is advantageous. In AC systems, maintaining a load power factor as close to unity as possible is also economically necessary. Practically, heavy currents are more challenging to handle than hi
Encyclopedia
07/26/2025
Frequency division method for measuring grid-to-ground insulation parameters
Frequency division method for measuring grid-to-ground insulation parameters
The frequency division method enables the measurement of grid-to-ground parameters by injecting a current signal of a different frequency into the open delta side of the potential transformer (PT).This method is applicable to ungrounded systems; however, when measuring the grid-to-ground parameters of a system where the neutral point is grounded via an arc suppression coil, the arc suppression coil must be disconnected from operation beforehand. Its measurement principle is shown in Figure 1.As
Leon
07/25/2025
The insulation parameters of the power grid to ground are measured by the tuning method
The insulation parameters of the power grid to ground are measured by the tuning method
The tuning method is suitable for measuring the ground parameters of systems where the neutral point is grounded via an arc suppression coil, but not applicable to ungrounded neutral point systems. Its measurement principle involves injecting a current signal with continuously varying frequency from the secondary side of the Potential Transformer (PT), measuring the returned voltage signal, and identifying the system's resonant frequency.During the frequency sweeping process, each injected heter
Leon
07/25/2025
Effect of Transition Resistance at the Grounding Point on the Rising Speed of Zero - sequence Voltage
Effect of Transition Resistance at the Grounding Point on the Rising Speed of Zero - sequence Voltage
In an arc - suppression coil grounding system, the rising speed of the zero - sequence voltage is greatly affected by the value of the transition resistance at the grounding point. The larger the transition resistance at the grounding point, the slower the rising speed of the zero - sequence voltage.In an ungrounded system, the transition resistance at the grounding point has basically no impact on the rising speed of the zero - sequence voltage.Simulation Analysis: Arc - suppression Coil Ground
Leon
07/24/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!