• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


How do I determine the input/output impedance of circuits that have transistors or other active components?

Encyclopedia
Field: Encyclopedia
0
China

Determining the input/output impedance of circuits with transistors or other active components is an important step to understand the performance and matching characteristics of the circuit. Here are some common methods and techniques for determining these impedances:

1. Analytical Methods

Input Impedance

Small-Signal Model: Use the small-signal model of the transistor (such as common-emitter, common-base, common-collector, etc.) to analyze the input impedance.

Common-Emitter Amplifier: The input impedance Rin can be expressed as:

60677435f2f7820f079620c48be50df7.jpeg

where rπ s the dynamic resistance between the base and emitter, gm is the transconductance,

RL is the load resistance, and RB is the base bias resistor.

Common-Base Amplifier: The input impedance Rin can be expressed as

c014af62668b4773cb4c2b5634c92470.jpeg

where re is the emitter resistance, and RE is the emitter bypass resistor.

Common-Collector Amplifier: The input impedance R in can be expressed as

3ab4e60f6d41454bf73eb302c1ebc89a.jpeg

Output Impedance

Small-Signal Model: Use the small-signal model of the transistor to analyze the output impedance.

Common-Emitter Amplifier: The output impedance Rout can be expressed as

2dde42e0c487973c305783bb6a303958.jpeg

where ro is the output resistance, and RC is the collector resistor.

Common-Base Amplifier: The output impedance R out an be expressed as

Common-Collector Amplifier: The output impedance Rout an be expressed as:

57d76f4dd6794be8705c0ade6965e05f.jpeg

2. Experimental Methods

Input Impedance

Voltage Method: Apply a small AC signal to the input of the circuit, measure the input voltage

Vinand input current Iin, and calculate the input impedance:

ed54e95b167d1aec5940098b1daac9dc.jpeg

Resistor Method: Series a known small resistor Rs atthe input of the circuit, measure the input voltage Vinand the voltage across the resistor Vs, and calculate the input impedance:

741811ac2ecb706a33f02f8a15f6abfb.jpeg

Output Impedance

Load Method: Connect a variable load resistor

RLat the output of the circuit, measure the output voltage Voutas the load resistance changes, and calculate the output impedance:

a6f411ac7dfa7e4a0ae2f68a8ce7eb17.jpeg

where Vout,0is the output voltage when the load resistance is infinite.

3. Simulation Methods

Circuit Simulation Software: Use circuit simulation software (such as SPICE, LTspice, Multisim, etc.) to simulate the circuit and directly obtain the input and output impedance.

Input Impedance: Apply a small AC signal to the input of the circuit, simulate to get the input voltage and input current, and calculate the input impedance.

Output Impedance: Connect a variable load resistor at the output of the circuit, simulate to get the output voltage as the load resistance changes, and calculate the output impedance.

4. Circuit Analysis Techniques

Thevenin Equivalent: Simplify the complex circuit to a Thevenin equivalent circuit, where the input impedance is the equivalent resistance.

Norton Equivalent: Simplify the complex circuit to a Norton equivalent circuit, where the output impedance is the equivalent resistance.

Summary

Determining the input/output impedance of circuits with transistors or other active components can be done using analytical methods, experimental methods, and simulation methods. The choice of method depends on your specific needs and available resources. Analytical methods are suitable for theoretical calculations, experimental methods are suitable for actual measurements, and simulation methods combine the advantages of both, allowing for detailed analysis and verification on a computer.

Give a tip and encourage the author!

Recommended

Why Must a Transformer Core Be Grounded at Only One Point? Isn't Multi-Point Grounding More Reliable?
Why Does the Transformer Core Need to Be Grounded?During operation, the transformer core, along with the metal structures, parts, and components that fix the core and windings, are all situated in a strong electric field. Under the influence of this electric field, they acquire a relatively high potential with respect to ground. If the core is not grounded, a potential difference will exist between the core and the grounded clamping structures and tank, which may lead to intermittent discharge.I
01/29/2026
Understanding Transformer Neutral Grounding
I. What is a Neutral Point?In transformers and generators, the neutral point is a specific point in the winding where the absolute voltage between this point and each external terminal is equal. In the diagram below, pointOrepresents the neutral point.II. Why Does the Neutral Point Need Grounding?The electrical connection method between the neutral point and earth in a three-phase AC power system is called theneutral grounding method. This grounding method directly affects:The safety, reliabilit
01/29/2026
Voltage Imbalance: Ground Fault, Open Line, or Resonance?
Single-phase grounding, line break (open-phase), and resonance can all cause three-phase voltage unbalance. Correctly distinguishing among them is essential for rapid troubleshooting.Single-Phase GroundingAlthough single-phase grounding causes three-phase voltage unbalance, the line-to-line voltage magnitude remains unchanged. It can be classified into two types: metallic grounding and non-metallic grounding. Inmetallic grounding, the faulted phase voltage drops to zero, while the other two phas
11/08/2025
Composition and Working Principle of Photovoltaic Power Generation Systems
Composition and Working Principle of Photovoltaic (PV) Power Generation SystemsA photovoltaic (PV) power generation system is primarily composed of PV modules, a controller, an inverter, batteries, and other accessories (batteries are not required for grid-connected systems). Based on whether it relies on the public power grid, PV systems are divided into off-grid and grid-connected types. Off-grid systems operate independently without relying on the utility grid. They are equipped with energy-s
10/09/2025
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.