How do I determine the input/output impedance of circuits that have transistors or other active components?

Encyclopedia
10/28/2024

Determining the input/output impedance of circuits with transistors or other active components is an important step to understand the performance and matching characteristics of the circuit. Here are some common methods and techniques for determining these impedances:

1. Analytical Methods

Input Impedance

Small-Signal Model: Use the small-signal model of the transistor (such as common-emitter, common-base, common-collector, etc.) to analyze the input impedance.

Common-Emitter Amplifier: The input impedance Rin can be expressed as:

60677435f2f7820f079620c48be50df7.jpeg

where rπ s the dynamic resistance between the base and emitter, gm is the transconductance,

RL is the load resistance, and RB is the base bias resistor.

Common-Base Amplifier: The input impedance Rin can be expressed as

c014af62668b4773cb4c2b5634c92470.jpeg

where re is the emitter resistance, and RE is the emitter bypass resistor.

Common-Collector Amplifier: The input impedance R in can be expressed as

3ab4e60f6d41454bf73eb302c1ebc89a.jpeg

Output Impedance

Small-Signal Model: Use the small-signal model of the transistor to analyze the output impedance.

Common-Emitter Amplifier: The output impedance Rout can be expressed as

2dde42e0c487973c305783bb6a303958.jpeg

where ro is the output resistance, and RC is the collector resistor.

Common-Base Amplifier: The output impedance R out an be expressed as

Common-Collector Amplifier: The output impedance Rout an be expressed as:

57d76f4dd6794be8705c0ade6965e05f.jpeg

2. Experimental Methods

Input Impedance

Voltage Method: Apply a small AC signal to the input of the circuit, measure the input voltage

Vinand input current Iin, and calculate the input impedance:

ed54e95b167d1aec5940098b1daac9dc.jpeg

Resistor Method: Series a known small resistor Rs atthe input of the circuit, measure the input voltage Vinand the voltage across the resistor Vs, and calculate the input impedance:

741811ac2ecb706a33f02f8a15f6abfb.jpeg

Output Impedance

Load Method: Connect a variable load resistor

RLat the output of the circuit, measure the output voltage Voutas the load resistance changes, and calculate the output impedance:

a6f411ac7dfa7e4a0ae2f68a8ce7eb17.jpeg

where Vout,0is the output voltage when the load resistance is infinite.

3. Simulation Methods

Circuit Simulation Software: Use circuit simulation software (such as SPICE, LTspice, Multisim, etc.) to simulate the circuit and directly obtain the input and output impedance.

Input Impedance: Apply a small AC signal to the input of the circuit, simulate to get the input voltage and input current, and calculate the input impedance.

Output Impedance: Connect a variable load resistor at the output of the circuit, simulate to get the output voltage as the load resistance changes, and calculate the output impedance.

4. Circuit Analysis Techniques

Thevenin Equivalent: Simplify the complex circuit to a Thevenin equivalent circuit, where the input impedance is the equivalent resistance.

Norton Equivalent: Simplify the complex circuit to a Norton equivalent circuit, where the output impedance is the equivalent resistance.

Summary

Determining the input/output impedance of circuits with transistors or other active components can be done using analytical methods, experimental methods, and simulation methods. The choice of method depends on your specific needs and available resources. Analytical methods are suitable for theoretical calculations, experimental methods are suitable for actual measurements, and simulation methods combine the advantages of both, allowing for detailed analysis and verification on a computer.

Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

Working Voltage in Power System
Working Voltage in Power System
Working VoltageThe term "working voltage" refers to the maximum voltage that a device can withstand without sustaining damage or burning out, while ensuring the reliability, safety, and proper operation of both the device and associated circuits.For long-distance power transmission, the use of high voltage is advantageous. In AC systems, maintaining a load power factor as close to unity as possible is also economically necessary. Practically, heavy currents are more challenging to handle than hi
Encyclopedia
07/26/2025
Frequency division method for measuring grid-to-ground insulation parameters
Frequency division method for measuring grid-to-ground insulation parameters
The frequency division method enables the measurement of grid-to-ground parameters by injecting a current signal of a different frequency into the open delta side of the potential transformer (PT).This method is applicable to ungrounded systems; however, when measuring the grid-to-ground parameters of a system where the neutral point is grounded via an arc suppression coil, the arc suppression coil must be disconnected from operation beforehand. Its measurement principle is shown in Figure 1.As
Leon
07/25/2025
The insulation parameters of the power grid to ground are measured by the tuning method
The insulation parameters of the power grid to ground are measured by the tuning method
The tuning method is suitable for measuring the ground parameters of systems where the neutral point is grounded via an arc suppression coil, but not applicable to ungrounded neutral point systems. Its measurement principle involves injecting a current signal with continuously varying frequency from the secondary side of the Potential Transformer (PT), measuring the returned voltage signal, and identifying the system's resonant frequency.During the frequency sweeping process, each injected heter
Leon
07/25/2025
Effect of Transition Resistance at the Grounding Point on the Rising Speed of Zero - sequence Voltage
Effect of Transition Resistance at the Grounding Point on the Rising Speed of Zero - sequence Voltage
In an arc - suppression coil grounding system, the rising speed of the zero - sequence voltage is greatly affected by the value of the transition resistance at the grounding point. The larger the transition resistance at the grounding point, the slower the rising speed of the zero - sequence voltage.In an ungrounded system, the transition resistance at the grounding point has basically no impact on the rising speed of the zero - sequence voltage.Simulation Analysis: Arc - suppression Coil Ground
Leon
07/24/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!