Inverting Operational Amplifier | Inverting Op Amp

Electrical4u
03/13/2024

What is an Inverting Amplifier?

An inverting amplifier (also known as an inverting operational amplifier or an inverting op-amp) is a type of operational amplifier circuit which produces an output which is out of phase with respect to its input by 180o.

This means that if the input pulse is positive, then the output pulse will be negative and vice versa. The figure below shows an inverting operational amplifier built by using an op-amp and two resistors.

Here we apply the input signal to the inverting terminal of the op-amp via the resistor Ri. We connect the non-inverting terminal to ground. Further, we provide the feedback necessary to stabilize the circuit, and hence to control the output, through a feedback resistor Rf.

inverting operational amplifier
Mathematically the voltage gain offered by the circuit is given as

Where,

However, we know that an ideal op amp has infinite input impedance due to which the currents flowing into its input terminals are zero i.e. I1 = I2 = 0. Thus, Ii = If. Hence,

We also know that in an ideal op amp the voltage at inverting and non-inverting inputs are always equal.

As we have grounded the non-inverting terminal, zero voltage appears at the non – inverting terminal. That means V2 = 0. Hence, V1 = 0, also. So, we can write

From, above two equations, we get,

The voltage gain of the inverting operational amplifier or inverting op amp is,

This indicates that the voltage gain of the inverting amplifier is decided by the ratio of the feedback resistor to the input resistor with the minus sign indicating the phase-reversal. Further, it is to be noted that the input impedance of the inverting amplifier is nothing but Ri.

Inverting amplifiers exhibit excellent linear characteristics which make them ideal as DC amplifiers. Moreover, they are often used to convert input current to the output voltage in the form of Transresistance or Transimpedance Amplifiers. Further, these can also be used in audio mixers when used in the form of Summing Amplifiers.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.

Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

Frequency division method for measuring grid-to-ground insulation parameters
Frequency division method for measuring grid-to-ground insulation parameters
The frequency division method enables the measurement of grid-to-ground parameters by injecting a current signal of a different frequency into the open delta side of the potential transformer (PT).This method is applicable to ungrounded systems; however, when measuring the grid-to-ground parameters of a system where the neutral point is grounded via an arc suppression coil, the arc suppression coil must be disconnected from operation beforehand. Its measurement principle is shown in Figure 1.As
Leon
07/25/2025
The insulation parameters of the power grid to ground are measured by the tuning method
The insulation parameters of the power grid to ground are measured by the tuning method
The tuning method is suitable for measuring the ground parameters of systems where the neutral point is grounded via an arc suppression coil, but not applicable to ungrounded neutral point systems. Its measurement principle involves injecting a current signal with continuously varying frequency from the secondary side of the Potential Transformer (PT), measuring the returned voltage signal, and identifying the system's resonant frequency.During the frequency sweeping process, each injected heter
Leon
07/25/2025
Effect of Transition Resistance at the Grounding Point on the Rising Speed of Zero - sequence Voltage
Effect of Transition Resistance at the Grounding Point on the Rising Speed of Zero - sequence Voltage
In an arc - suppression coil grounding system, the rising speed of the zero - sequence voltage is greatly affected by the value of the transition resistance at the grounding point. The larger the transition resistance at the grounding point, the slower the rising speed of the zero - sequence voltage.In an ungrounded system, the transition resistance at the grounding point has basically no impact on the rising speed of the zero - sequence voltage.Simulation Analysis: Arc - suppression Coil Ground
Leon
07/24/2025
Current Division and Voltage Division Rule
Current Division and Voltage Division Rule
Current Division RuleA parallel circuit functions as a current divider, where the incoming current splits among all branches while the voltage across each branch remains constant. The Current Division Rule is used to determine the current through circuit impedances, as illustrated by the circuit below:The currentI splits intoI1 andI2 across two parallel branches with resistancesR1 andR2, whereVdenotes the voltage drop across both resistances. As is known,Then the equation of the current is writt
Edwiin
06/02/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!