Parallel RLC Circuit: What is it?

Electrical4u
03/13/2024

Consider a RLC circuit in which resistor, inductor and capacitor are connected in parallel to each other. This parallel combination is supplied by voltage supply, VS. This parallel RLC circuit is exactly opposite to series RLC circuit.

In series RLC circuit, the current flowing through all the three components i.e the resistor, inductor and capacitor remains the same, but in parallel circuit, the voltage across each element remains the same and the current gets divided in each component depending upon the impedance of each component. That is why parallel RLC circuit is said to have dual relationship with series RLC circuit.
parallel rlc circuit

The total current, IS drawn from the supply is equal to the vector sum of the resistive, inductive and capacitive current, not the mathematic sum of the three individual branch currents, as the current flowing in resistor, inductor and capacitor are not in same phase with each other; so they cannot be added arithmetically.

Apply Kirchhoff’s current law, which states that the sum of currents entering a junction or node, is equal to the sum of current leaving that node we get,

Phasor Diagram of Parallel RLC Circuit

Let V is the supply voltage.
IS is the total source current.
IR is the current flowing through the resistor.
IC is the current flowing through the capacitor.
IL is the current flowing through the inductor.
θ is the phase angle difference between supply voltage and current.

For drawing the phasor diagram of parallel RLC circuit, voltage is taken as reference because voltage across each element remains the same and all the other currents i.e IR, IC, IL are drawn relative to this voltage vector. We know that in case of resistor, voltage and current are in same phase; so draw current vector IR in same phase and direction to voltage. In case of capacitor, current leads the voltage by 90o so, draw IC vector leading voltage vector, V by 90o. For inductor, current vector IL lags voltage by 90o so draw IL lagging voltage vector, V by 90o. Now draw the resultant of IR, IC, IL i.e current IS at a phase angle difference of θ with respect to voltage vector, V.

vector diagram of rlc circuit
Simplifying the phasor diagram, we get a simplified phasor diagram on right hand side. On this phasor diagram, we can easily apply Pythagoras’s theorem and we get,

Impedance of Parallel RLC Circuit

From the phasor diagram of parallel RLC circuit we get,

Substituting the value of IR, IC, IL in above equation we get,

On simplifying,

As shown above in the equation of impedance, Z of a parallel RLC circuit each element has reciprocal of impedance (1/Z) i.e admittance, Y. For solving parallel RLC circuit it is convenient if we find admittance of each branch and the total admittance of the circuit can be found by simply adding each branch’s admittance.

Admittance Triangle of Parallel RLC Circuit

In series RLC circuit, impedance is considered, but as stated in introduction on parallel RLC circuit, it is exactly opposite to that of series RLC circuit; so in Parallel RLC circuit, we will consider admittance. The impedance Z has two components; resistance, R and reactance, X. Similarly, admittance also has two components such as conductance, G (reciprocal of resistance, R) and suspceptance, B (reciprocal of reactance, X). So admittance triangle of parallel RLC circuit is completely opposite to that of series impedance triangle.
admittance triangle

Resonance in Parallel RLC Circuit

Like series RLC circuit, parallel RLC circuit also resonates at particular frequency called resonance frequency i.e. there occurs a frequency at which inductive reactance becomes equal to capacitive reactance but unlike series RLC circuit, in parallel RLC circuit the impedance becomes maximum and the circuit behaves like purely resistive circuit leading to unity electrical power factor of the circuit.

Statement: Respect the original, good articles worth sharing, if there is infringement please contact delete.


Electrical4u

Electrical4U is dedicated to the teaching and sharing of all things related to electrical and electronics engineering.

Frequency division method for measuring grid-to-ground insulation parameters
Frequency division method for measuring grid-to-ground insulation parameters
The frequency division method enables the measurement of grid-to-ground parameters by injecting a current signal of a different frequency into the open delta side of the potential transformer (PT).This method is applicable to ungrounded systems; however, when measuring the grid-to-ground parameters of a system where the neutral point is grounded via an arc suppression coil, the arc suppression coil must be disconnected from operation beforehand. Its measurement principle is shown in Figure 1.As
Leon
07/25/2025
The insulation parameters of the power grid to ground are measured by the tuning method
The insulation parameters of the power grid to ground are measured by the tuning method
The tuning method is suitable for measuring the ground parameters of systems where the neutral point is grounded via an arc suppression coil, but not applicable to ungrounded neutral point systems. Its measurement principle involves injecting a current signal with continuously varying frequency from the secondary side of the Potential Transformer (PT), measuring the returned voltage signal, and identifying the system's resonant frequency.During the frequency sweeping process, each injected heter
Leon
07/25/2025
Effect of Transition Resistance at the Grounding Point on the Rising Speed of Zero - sequence Voltage
Effect of Transition Resistance at the Grounding Point on the Rising Speed of Zero - sequence Voltage
In an arc - suppression coil grounding system, the rising speed of the zero - sequence voltage is greatly affected by the value of the transition resistance at the grounding point. The larger the transition resistance at the grounding point, the slower the rising speed of the zero - sequence voltage.In an ungrounded system, the transition resistance at the grounding point has basically no impact on the rising speed of the zero - sequence voltage.Simulation Analysis: Arc - suppression Coil Ground
Leon
07/24/2025
Current Division and Voltage Division Rule
Current Division and Voltage Division Rule
Current Division RuleA parallel circuit functions as a current divider, where the incoming current splits among all branches while the voltage across each branch remains constant. The Current Division Rule is used to determine the current through circuit impedances, as illustrated by the circuit below:The currentI splits intoI1 andI2 across two parallel branches with resistancesR1 andR2, whereVdenotes the voltage drop across both resistances. As is known,Then the equation of the current is writt
Edwiin
06/02/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!