• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What is Transformation Ratio?

Encyclopedia
Field: Encyclopedia
0
China

What is Transformation Ratio?


Transformer conversion ratio refers to the proportional relationship between the number of turns between the primary and secondary windings of the transformer, which determines the voltage conversion capability of the transformer. The conversion ratio is one of the most basic characteristics of a transformer and is used to describe how the transformer changes the input voltage to the output voltage.


Definition


The conversion ratio of the transformer is defined as the ratio of the number of turns in the primary winding N1 to the number of turns in the secondary winding N2:


bca0efdf41ba69f748906149d8d19117.jpeg


The conversion ratio can also be expressed in terms of voltage, that is, the ratio of primary voltage V1 to secondary voltage V2:


51fb2a315075566a3a0879f1f8694555.jpeg


Type


Booster transformer: when N 1<N 2, the transformation ratio n<1, the primary voltage is lower than the secondary voltage, that is, V1<V2.


Step-down transformer: when N1>N2, the conversion ratio n>1, the primary voltage is higher than the secondary voltage, that is, V1>V2


Isolation transformer: when N1=N2, the transformation ratio n=1, the primary voltage is equal to the secondary voltage, that is V1 is equal to V2.


Working principle


The working principle of transformers is based on the law of electromagnetic induction. When an alternating current passes through the primary winding, it creates an alternating magnetic field around the winding. This magnetic field passes through the secondary winding and induces an electromotive force (EMF) in the secondary winding according to Faraday's law of electromagnetic induction. The size of the induced electromotive force is proportional to the number of turns in the winding, so:


d557d6dfe725e97ca0383325f89c048c.jpeg


Current relation


In addition to voltage changes, transformers also change current. According to the law of electromagnetic induction, the primary current I1 and the secondary current I2


The relationship between them follows the following rules:


42175a8b1964c5f5d0443fd8b074db8f.jpeg


This means that if the transformer is a booster transformer, the secondary current will be reduced; If it is a step-down transformer, the secondary current will increase.


Power relation


Ideally, the input power of the transformer is equal to the output power (ignoring the loss) :


a163359708e103f9d87590c40ecf97cc.jpeg


Application scenario


Transformer conversion ratio has a wide range of application scenarios, including but not limited to:


  •  Power transmission: In the process of power transmission, booster transformers are used to increase voltage to reduce energy loss in the transmission line; Step-down transformers are used to convert high voltage electricity at the end user to low voltage electricity suitable for domestic and industrial use.



  • Power distribution: In a power distribution system, transformers are used to convert the voltage of a high-voltage grid into a voltage suitable for use on the local grid.



  • Industrial applications: In a variety of industrial equipment, transformers are used to convert the grid voltage to the voltage suitable for the operation of a particular equipment.


  • Laboratory and research: In laboratories, transformers are used to generate specific voltages or currents to meet experimental needs.



Design and selection


When designing and selecting a transformer, the following factors need to be considered:


  • Load requirements: Select the appropriate conversion ratio according to the specific requirements of the load to ensure that the output voltage meets the requirements of the load.



  • Voltage level: Select the corresponding transformer according to the voltage level of the power system.



  • Capacity: Select the capacity of the transformer according to the maximum power requirements of the load.



  • Efficiency: Choose an efficient transformer to reduce energy loss.



  • Reliability: Select high-quality transformers to ensure long-term stable operation.


Give a tip and encourage the author!

Recommended

Why Must a Transformer Core Be Grounded at Only One Point? Isn't Multi-Point Grounding More Reliable?
Why Does the Transformer Core Need to Be Grounded?During operation, the transformer core, along with the metal structures, parts, and components that fix the core and windings, are all situated in a strong electric field. Under the influence of this electric field, they acquire a relatively high potential with respect to ground. If the core is not grounded, a potential difference will exist between the core and the grounded clamping structures and tank, which may lead to intermittent discharge.I
01/29/2026
What’s the Difference Between Rectifier Transformers and Power Transformers?
What is a Rectifier Transformer?"Power conversion" is a general term encompassing rectification, inversion, and frequency conversion, with rectification being the most widely used among them. Rectifier equipment converts input AC power into DC output through rectification and filtering. A rectifier transformer serves as the power supply transformer for such rectifier equipment. In industrial applications, most DC power supplies are obtained by combining a rectifier transformer with rectifier equ
01/29/2026
How to Judge, Detect and Troubleshoot Transformer Core Faults
1. Hazards, Causes, and Types of Multi-Point Grounding Faults in Transformer Cores1.1 Hazards of Multi-Point Grounding Faults in the CoreUnder normal operation, a transformer core must be grounded at only one point. During operation, alternating magnetic fields surround the windings. Due to electromagnetic induction, parasitic capacitances exist between the high-voltage and low-voltage windings, between the low-voltage winding and the core, and between the core and the tank. The energized windin
01/27/2026
A Brief Discussion on the Selection of Grounding Transformers in Boost Stations
A Brief Discussion on the Selection of Grounding Transformers in Boost StationsThe grounding transformer, commonly referred to as "grounding transformer," operates under the condition of being no-load during normal grid operation and overloaded during short-circuit faults. According to the difference in filling medium, common types can be divided into oil-immersed and dry-type; according to phase number, they can be classified into three-phase and single-phase grounding transformers. The groundi
01/27/2026
Related Products
Send inquiry
+86
Click to upload file
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.