DC Generators Performance Curves

Encyclopedia
08/20/2024

Performance Curves Definition

Performance curves of a DC generator are graphs that show how the output voltage changes as the load current varies from no load to full load. These are also known as characteristic curves. These curves help us understand the voltage regulation of different types of DC generators. Better performance is indicated by lower voltage regulation.

Separately Excited DC Generator

Though this type of DC generators are rarely used due to its cost for the separate excitation but the performance of these DC generators are quite satisfactory. In separately excited DC generators, the terminal voltage as the load increases and the load current started to flow.

There is slight drop in the terminal voltage due to armature reaction and IR drop but these drop can be eliminated by increasing field excitation and then we can get constant terminal voltage. In the diagram below, the curve AB is showing this characteristic.

Series Wound DC Generator

In series DC generators, the terminal voltage at no load is zero because no current flows through the field winding. As the load increases, the output voltage rises. The terminal voltage varies widely with small changes in load current. Due to armature reaction and ohmic drop in the armature winding, the output voltage is lower than the generated voltage.

Shunt Wound DC Generator

In shunt wound DC generators, there is always some voltage at no load due to the shunt field winding. As the load increases, the terminal voltage drops quickly because of strong demagnetizing armature reaction and resistance drop. This drastic reduction in terminal voltage leads to a decrease in load current, resulting in poor performance of this type of generators.

Compound Wound DC Generator

At no load, the performance curve of this type of DC generator is same as that of shunt field generators because at no load, there is no current in the series field winding. When the load increases, then the terminal voltage drops due to the shunt DC generator, but the voltage rise in the series DC generator compensates the voltage drop. For these reason the terminal voltage remains constant. The terminal voltage can also make higher or lower by controlling the amp-turns of the series field winding. In the diagram below, the curve FG is showing this characteristic.

a08420d0433e6d6f7a185f2e38d71b7d.jpeg


Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
For users, when purchasing a 35kV new energy transformer, choosing between dry-type, mineral oil-filled, or vegetable oil-filled types involves multiple considerations. These include user habits, maintenance-free performance, safety and fire resistance, volume and weight, among others. However, cost differences are undoubtedly one of the most crucial factors.To illustrate the issue intuitively, this paper selects a three-level energy efficiency dual-winding new energy transformer with a rated ca
Ron
07/26/2025
What is the connection group of a transformer?
What is the connection group of a transformer?
Transformer Connection GroupThe connection group of a transformer refers to the phase difference between the primary and secondary voltages or currents. It is determined by the winding directions of the primary and secondary coils, the labeling of their start and end terminals, and the connection mode. Expressed in a clock-like format, there are 12 groups in total, numbered from 0 to 11.The DC method is commonly used to measure the transformer's connection group, mainly to verify whether the con
Vziman
07/26/2025
What is the sequence for powering down the transformer?
What is the sequence for powering down the transformer?
The sequence for shutting down a main transformer is as follows: when de-energizing, the load side should be shut down first, followed by the power supply side. For energizing operations, the reverse order applies: the power supply side is energized first, then the load side. This is because: Energizing from the power supply side to the load side makes it easier to identify the fault range and take prompt judgment and handling measures in case of a fault, preventing the fault from spreading or e
Rockwell
07/26/2025
What are the methods for switching operations of station transformers?
What are the methods for switching operations of station transformers?
Let's take an auxiliary power system with two station transformers as an example. When one station transformer needs to be out of service, there are two operation methods: non-interruptive power supply and instantaneous power interruption. Generally, the method of instantaneous power interruption on the low-voltage side is preferred.The operation method for instantaneous power interruption on the low-voltage side is as follows:Open the 380V power incoming circuit breaker of the corresponding sec
Vziman
07/26/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!