What is a DC Motor Drive?

Encyclopedia
08/21/2024

What is a DC Motor Drive?

DC Motor Drives Definition

DC motor drives are systems used to control the performance of DC motors, enhancing operations such as speed, starting, braking, and reversing.

Starting Mechanisms

Starting DC motor drives involves managing high initial currents to prevent motor damage, typically by varying resistance.

Braking Systems

Braking is a very important operation for DC motor drives. The need of decreasing the speed of a motor or stopping it totally may arise at any moment, that’s when braking is applied. braking of DC motors is basically developing a negative torque while the motor works as generator and as a result the motion of the motor is opposed. There are mainly three types of braking of DC motors :

Regenerative braking

Takes place when the generated energy is supplied to the source, or we can show this via this equation :

E > V and negative Ia.

As the field flux cannot be increased beyond a rated value, so regenerative braking is possible only when the speed of motor is higher than the rated value. The speed torque characteristics is shown in the graph above. When regenerative braking occurs, the terminal voltage rises and as a result the source is relieved from supplying this amount of power. This is the reason why loads are connected across the circuit. So, it is clear that regenerative braking should be used only when there are enough loads to absorb the regenerative power.

Dynamic or rheostat braking

Dynamic Braking is another type of braking of DC motor drives where the rotation of the armature itself causes the braking. This method is also a widely used DC motor drive system. When braking is desired, then the armature of the motor is disconnected from the source and a series resistance is introduced across the armature. Then the motor acts as a generator and current flows in the opposite direction which indicates that the field connection is reversed. The diagram for separately excited and series DC motor both are shown in figure below.

When braking is required to occur quickly the resistance (RB) is considered to be of some sections. As the braking occurs and the speed of the motor falls, the resistance are cut out one by one section to maintain the light average torque.

Plugging or reverse voltage braking.

Plugging is a type of braking where the supply voltage is reserved when the need of braking arises. A resistance is also introduced in the circuit while braking takes place. When the direction of the supply voltage is reserved, then the armature current also reserves forcing the back enf to a very high value and hence braking the motor. For series motor only armature is reversed for plugging. The diagram of separately excited and series excited motors are shown in the figure.

c6e757e9ff0f79247572f59bf5f25131.jpeg

0409754a898479577e2c182896f41dd4.jpeg 


cfca24f42b85f3bb64a0df6d690abf1e.jpegbfa01c4acb694293ad566d82822cfc57.jpeg 

 aa5dc7027e06bb21fd4a62bf5abba108.jpeg

Speed Control

The main application of electric drives can be said as the need of braking of DC motors . We know the equation to describe the speed of a rotating DC motor drives is as

Now, according to this equation, the speed of a motor can be controlled by the following methods

f6ed5524e08c27831b2f20f934b991bb.jpeg

Armature voltage control

Among all of these, armature voltage control is preferred because of high efficiency and good speed regulation and good transient response. But the only disadvantage of this method is that it can only operate under the rated speed, because the armature voltage cannot be allowed to exceed rated value. The speed torque curve for armature voltage control is shown below.

7d5d7011ba4107b3126e63a6541d84b4.jpeg

Field flux control

When speed control is required above the rated speed, field flux control is used. Normally in ordinary machines, the maximum speed can be allowed up to twice of the rated speed and for specially designed machines this can be allowed up to six times of the rated speed. The torque speed characteristics for field flux control are shown in the figure below.

c0a87e0d2e0f47545715599083729398.jpeg 

Armature resistance control

The resistance control method adjusts speed by introducing a resistor in series with the armature, which dissipates power. This inefficient method is seldom used, typically only where brief speed control is needed, like in traction systems.

4d35b3801b2943f6d56497257272fa69.jpeg

Encyclopedia

The Electricity Encyclopedia is dedicated to accelerating the dissemination and application of electricity knowledge and adding impetus to the development and innovation of the electricity industry.

Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
Cost Differences and Performance Comparison of 35kV New Energy Transformers Based on Dry-Type, Mineral Oil, and Vegetable Oil
For users, when purchasing a 35kV new energy transformer, choosing between dry-type, mineral oil-filled, or vegetable oil-filled types involves multiple considerations. These include user habits, maintenance-free performance, safety and fire resistance, volume and weight, among others. However, cost differences are undoubtedly one of the most crucial factors.To illustrate the issue intuitively, this paper selects a three-level energy efficiency dual-winding new energy transformer with a rated ca
Ron
07/26/2025
What is the connection group of a transformer?
What is the connection group of a transformer?
Transformer Connection GroupThe connection group of a transformer refers to the phase difference between the primary and secondary voltages or currents. It is determined by the winding directions of the primary and secondary coils, the labeling of their start and end terminals, and the connection mode. Expressed in a clock-like format, there are 12 groups in total, numbered from 0 to 11.The DC method is commonly used to measure the transformer's connection group, mainly to verify whether the con
Vziman
07/26/2025
What is the sequence for powering down the transformer?
What is the sequence for powering down the transformer?
The sequence for shutting down a main transformer is as follows: when de-energizing, the load side should be shut down first, followed by the power supply side. For energizing operations, the reverse order applies: the power supply side is energized first, then the load side. This is because: Energizing from the power supply side to the load side makes it easier to identify the fault range and take prompt judgment and handling measures in case of a fault, preventing the fault from spreading or e
Rockwell
07/26/2025
What are the methods for switching operations of station transformers?
What are the methods for switching operations of station transformers?
Let's take an auxiliary power system with two station transformers as an example. When one station transformer needs to be out of service, there are two operation methods: non-interruptive power supply and instantaneous power interruption. Generally, the method of instantaneous power interruption on the low-voltage side is preferred.The operation method for instantaneous power interruption on the low-voltage side is as follows:Open the 380V power incoming circuit breaker of the corresponding sec
Vziman
07/26/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!