• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


Equivalent Circuit of a Transformer

Edwiin
Field: Power switch
China

The equivalent circuit diagram of any device can be extremely useful for predicting how the device will behave under different operating conditions. It is essentially a circuit - based depiction of the equations that describe the device's performance.

The simplified equivalent circuit of a transformer is constructed by representing all of the transformer's parameters on either the secondary side or the primary side. The equivalent circuit diagram of the transformer is presented below:

Let the equivalent circuit of a transformer be considered, with a transformation ratio K = E2/E1.The induced electromotive force E1 is equivalent to the primary applied voltage V1 minus the primary voltage drop. This voltage gives rise to the no - load current I0 in the primary winding of the transformer. Since the value of the no - load current is extremely small, it is often neglected in many analyses.Consequently,  I1≈I1′. The no - load current I0 can be further decomposed into two components: the magnetizing current Im and the working current Iw.These two components of the no - load current are a result of the current drawn by a non - inductive resistance R0 and a pure reactance X0, across which the voltage is E1 (or equivalently, V1−primary voltage drop).

The terminal voltage V2 across the load is equal to the induced electromotive force E2 in the secondary winding minus the voltage drop in the secondary winding.

Equivalent Circuit with All Quantities Referred to the Primary Side

In this scenario, to construct the equivalent circuit of the transformer, all parameters need to be referred to the primary side, as depicted in the figure below:

The following are the values of resistance and reactance given below

Secondary resistance referred to the primary side is given as:

The equivalent resistance referred to the primary side is given as:

Secondary reactance referred to the primary side is given as:

The equivalent reactance referred to the primary side is given as:

Equivalent Circuit with All Quantities Referred to the Secondary Side

The following is the equivalent circuit diagram of the transformer when all parameters are referred to the secondary side.

The following are the values of resistance and reactance given below

Primary resistance referred to the secondary side is given as

The equivalent resistance referred to the secondary side is given as

Primary reactance referred to the secondary side is given as

The equivalent reactance referred to the secondary side is given as

Simplified Equivalent Circuit of Transformer

Since the no-load current I0 typically accounts for only 3 to 5% of the full-load rated current, the parallel branch comprising resistance R0 and reactance X0 can be omitted without introducing significant errors in analyzing the transformer's behavior under loaded conditions.

Further simplification of the transformer's equivalent circuit is achieved by neglecting this parallel R0-X0 branch. The simplified circuit diagram of the transformer is as follows:

Give a tip and encourage the author!
Recommended
Why Regular Transformer Maintenance Matters: 5 Serious Consequences of Neglecting It
I. Allowable TemperatureWhen a transformer is in operation, its windings and iron core generate copper loss and iron loss. These losses are converted into heat energy, causing the temperature of the transformer's iron core and windings to rise. If the temperature exceeds the allowable value for a long time, the insulation will gradually lose its mechanical elasticity and age.The temperature of each part of the transformer during operation is different: the winding temperature is the highest, fol
Rockwell
09/12/2025
How to Implement Condition-Based Maintenance for Power Transformers? A Complete 4-Step Process Analysis
1. Definition of Condition-Based MaintenanceCondition-based maintenance refers to a maintenance method where decisions on whether and how to perform maintenance are determined based on the real-time operating status and health condition of equipment. It has no fixed maintenance methods or schedules. The prerequisite for condition-based maintenance is the establishment of equipment parameters and the comprehensive analysis of various operational information of the equipment, so as to make reasona
Noah
09/12/2025
Can't choose a dry-type transformer? Get expert advice – free.
Traction Rectifier TransformersRated capacity: 800 to 4400 kVA; Voltage class: 10 kV and 35 kV; Rectifier pulse number: 12-pulse and 24-pulse. Compared with 12-pulse rectifier circuits, 24-pulse rectifier circuits can reduce the harmonic pollution of the power grid by 50%, and no filtering equipment is needed at this location. It is suitable for power supply systems of urban subways and rail transit.Excitation Rectifier TransformersRated capacity: 315 to 3000 × 3 kVA; Voltage class: 10 kV, 13.8
Vziman
09/12/2025
SG10 Series Transformer Overload Protection Solution | Prevent Overheating and Damage, View Now
Operating Conditions in National Standard GB 6450-1986Ambient temperature: Maximum ambient temperature: +40°C Daily average maximum temperature: +30°C Annual average maximum temperature: +20°C Minimum temperature: -30°C (outdoor); -5°C (indoor) Horizontal axis: Product load; Vertical axis: Average coil temperature rise in Kelvin (note: not in Celsius).For Class H insulation products, the long-term temperature resistance of insulation materials is stipulated by the state as 180°C. However, the in
Rockwell
09/12/2025
Related Products
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.