• Product
  • Suppliers
  • Manufacturers
  • Solutions
  • Free tools
  • Knowledges
  • Experts
  • Communities
Search


What is Automatic Voltage Regulator?

Edwiin
Field: Power switch
China
An automatic voltage regulator is employed to regulate voltage, converting fluctuating voltages into a constant one. Voltage fluctuations mainly stem from variations in the load on the supply system. Such voltage variations can damage the equipment within the power system. These fluctuations can be mitigated by installing voltage - control equipment at various locations, such as near transformers, generators, and feeders. Multiple voltage regulators are often placed throughout the power system to manage voltage variations effectively.
In a DC supply system, for feeders of equal length, over - compound generators can be used to control voltage. However, for feeders of different lengths, feeder boosters are utilized to maintain a constant voltage at the end of each feeder. In an AC system, various methods, including booster transformers, induction regulators, and shunt condensers, can be employed to control voltage.
Working Principle of Voltage Regulator
It operates based on the principle of error detection. The output voltage of an AC generator is obtained via a potential transformer, then rectified, filtered, and compared with a reference voltage. The difference between the actual voltage and the reference voltage is called the error voltage. This error voltage is amplified by an amplifier and subsequently supplied to the main exciter or pilot exciter.
Consequently, the amplified error signals regulate the excitation of the main or pilot exciter through a buck or boost action (i.e., they manage voltage fluctuations). Controlling the exciter output in turn regulates the terminal voltage of the main alternator.
Application of the Automatic Voltage Regulator
  • The key functions of an Automatic Voltage Regulator (AVR) are as follows:
  • It regulates the system voltage and helps keep the machine's operation closer to steady - state stability.
  • It distributes the reactive load among parallel - operating alternators.
  • AVRs mitigate overvoltages that result from sudden load loss in the system.
  • Under fault conditions, it increases the system's excitation to ensure maximum synchronizing power when the fault is cleared.
  • When there is a sudden load change in the alternator, the excitation system needs to adjust to maintain the same voltage under the new load conditions. The AVR enables this adjustment. The AVR equipment acts on the exciter field, altering the exciter output voltage and field current. However, during severe voltage fluctuations, the AVR may not respond rapidly.
To achieve a quicker response, fast - acting voltage regulators based on the overshooting - the - mark principle are utilized. In this principle, when the load increases, the system's excitation also increases. But before the voltage rises to the level corresponding to the increased excitation, the regulator reduces the excitation to an appropriate value.
Give a tip and encourage the author!
Recommended
Why Regular Transformer Maintenance Matters: 5 Serious Consequences of Neglecting It
I. Allowable TemperatureWhen a transformer is in operation, its windings and iron core generate copper loss and iron loss. These losses are converted into heat energy, causing the temperature of the transformer's iron core and windings to rise. If the temperature exceeds the allowable value for a long time, the insulation will gradually lose its mechanical elasticity and age.The temperature of each part of the transformer during operation is different: the winding temperature is the highest, fol
Rockwell
09/12/2025
How to Implement Condition-Based Maintenance for Power Transformers? A Complete 4-Step Process Analysis
1. Definition of Condition-Based MaintenanceCondition-based maintenance refers to a maintenance method where decisions on whether and how to perform maintenance are determined based on the real-time operating status and health condition of equipment. It has no fixed maintenance methods or schedules. The prerequisite for condition-based maintenance is the establishment of equipment parameters and the comprehensive analysis of various operational information of the equipment, so as to make reasona
Noah
09/12/2025
Can't choose a dry-type transformer? Get expert advice – free.
Traction Rectifier TransformersRated capacity: 800 to 4400 kVA; Voltage class: 10 kV and 35 kV; Rectifier pulse number: 12-pulse and 24-pulse. Compared with 12-pulse rectifier circuits, 24-pulse rectifier circuits can reduce the harmonic pollution of the power grid by 50%, and no filtering equipment is needed at this location. It is suitable for power supply systems of urban subways and rail transit.Excitation Rectifier TransformersRated capacity: 315 to 3000 × 3 kVA; Voltage class: 10 kV, 13.8
Vziman
09/12/2025
High harmonics? Your transformer may be overheating and aging fast.
This report is based on the analysis of one-day power quality monitoring data of your company's distribution system. The data shows that there is significant three-phase current harmonic distortion in the system (with a high total harmonic distortion of current, THDi). In accordance with international standards (IEC/IEEE), harmonic currents at this level have posed substantial risks to the safe, reliable, and economical operation of the power supply transformer, mainly manifested in additional h
Leon
09/12/2025
Seed Inquiry
Download
Get the IEE Business Application
Use the IEE-Business app to find equipment, obtain solutions, connect with experts, and participate in industry collaboration anytime, anywhere—fully supporting the development of your power projects and business.