Construction of Potential Transformer

Edwiin
03/21/2025

A potential or voltage transformer is a step - down transformer employed to transform high - voltage values into fractional values. Measuring instruments such as ammeters, voltmeters, and wattmeters are designed for low - voltage operation. Connecting these measuring devices directly to high - voltage lines for measurement can cause them to burn out or be damaged. Hence, a potential transformer is used for measurement purposes.
The primary windings of the potential transformer are directly linked to the measurand line, and its secondary terminals are connected to the measuring meter. The potential transformer converts the high voltage of the measurand line into a fractional value suitable for the measuring instrument.
The construction of a potential transformer is nearly identical to that of a power transformer, yet there are some minor differences:
  • The construction of a potential transformer takes into account factors like cost, efficiency, and regulation. In contrast, a potential transformer is designed with a focus on performance parameters. Specifically, the ratio of voltage to the number of turns remains constant, and the phase difference between the input and output signals is minimized.
  • Power transformers may encounter temperature - rise issues due to overloading. Since the output of a potential transformer is relatively small, the problem of overheating does not occur in it.
Parts of a Potential Transformer
The following are the essential components of a potential transformer.
Core
The core of a potential transformer can be of either the core - type or shell - type. In a core - type transformer, the windings surround the core. Conversely, in a shell - type transformer, the core surrounds the windings. Shell - type transformers are designed for low - voltage operations, while core - type transformers are utilized for high - voltage applications.
Windings
The primary and secondary windings of a potential transformer are arranged coaxially. This configuration is adopted to minimize the leakage reactance.
Note on Leakage Reactance: Not all of the flux generated by the primary winding of a transformer is coupled to the secondary winding. A small fraction of the flux is associated with only one of the windings, and this is called the leakage flux. The leakage flux induces self - reactance in the winding it links with. Reactance, in general, refers to the opposition offered by a circuit element to the change in voltage and current. This self - reactance is known as leakage reactance.
In a low - voltage transformer, insulation is placed adjacent to the core to mitigate insulation - related issues. A single coil serves as the primary winding in a low - potential transformer. However, in a large - potential transformer, the single coil is divided into smaller parts to reduce the insulation requirements between layers.
Insulation
Cotton tape and cambric materials are commonly used as insulation between the windings of a potential transformer. In low - voltage transformers, compound insulation is not typically employed. High - voltage transformers use oil as an insulation medium. Transformers with a rating exceeding 45kVA use porcelain as an insulator.
Bushing
A bushing is an insulated device that enables the connection of the transformer to the external circuit. The bushings of a transformer are usually made of porcelain. Transformers that use oil as an insulating medium employ oil - filled bushings.
A two - bushing transformer is used in systems where the line it is connected to is not at ground potential. Transformers connected to the ground neutral require only one high - voltage bushing.
Connection of Potential Transformer
The primary winding of a potential transformer is connected to the high - voltage transmission line whose voltage is to be measured. The secondary winding of the transformer is connected to the measuring meter, which determines the magnitude of the voltage.
 
 
Edwiin

Hello,I'm Wdwiin. A decade of hands-on experience in electrical engineering, specializing in high-voltage systems, smart grids, and renewable energy technologies. Passionate about technical exchange and knowledge sharing, committed to interpreting industry trends with professional insights to empower peers. Connection creates value—let’s explore the boundless possibilities of the electrical world together!

What is Steady State Stability in Power System?
What is Steady State Stability in Power System?
Definition of Steady State StabilitySteady state stability is defined as the capability of an electric power system to sustain its initial operating condition following a small disturbance, or to converge to a state closely approximating the initial condition when the disturbance persists. This concept holds critical significance in power system planning and design, the development of specialized automatic control devices, the commissioning of new system components, and the adjustment of operati
Edwiin
07/26/2025
What is Voltage Stability in Power Systems?
What is Voltage Stability in Power Systems?
Definition of Voltage StabilityVoltage stability in a power system is defined as the ability to maintain acceptable voltages at all buses under both normal operating conditions and after being subjected to a disturbance. In normal operation, the system’s voltages remain stable; however, when a fault or disturbance occurs, voltage instability may arise, leading to a progressive and uncontrollable voltage decline. Voltage stability is sometimes referred to as "load stability."Voltage instability c
Encyclopedia
07/26/2025
Difference Between Shunt and Series Voltage Regulator
Difference Between Shunt and Series Voltage Regulator
Linear voltage regulators are mainly classified into two types: shunt voltage regulators and series voltage regulators. The key difference between them lies in the connection of the control element: in a shunt voltage regulator, the control element is connected in parallel with the load; in contrast, in a series voltage regulator, the control element is connected in series with the load. These two types of voltage regulator circuits operate on different principles and thus have their own advanta
Edwiin
07/25/2025
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?
What is Dual Trace Oscilloscope?DefinitionA dual-trace oscilloscope uses a single electron beam to generate two separate traces, each deflected by an independent input source. To produce these two traces, it primarily employs two operating modes—alternate mode and chopped mode—controlled by a switch.Purpose of a Dual-Trace OscilloscopeWhen analyzing or studying multiple electronic circuits, comparing their voltage characteristics is often critical. While one could use multiple oscilloscopes for
Encyclopedia
07/25/2025
Inquiry
Download
IEE-Business is dedicated to serving the personnel in the global power industry.
Join IEE-Business, not only can you discover power equipment and power knowledge, but also canhnd like - minded friends!